Wang, Liang
Fast k-NN search
Hyvönen, Ville, Pitkänen, Teemu, Tasoulis, Sotiris, Jääsaari, Elias, Tuomainen, Risto, Wang, Liang, Corander, Jukka, Roos, Teemu
Efficient index structures for fast approximate nearest neighbor queries are required in many applications such as recommendation systems. In high-dimensional spaces, many conventional methods suffer from excessive usage of memory and slow response times. We propose a method where multiple random projection trees are combined by a novel voting scheme. The key idea is to exploit the redundancy in a large number of candidate sets obtained by independently generated random projections in order to reduce the number of expensive exact distance evaluations. The method is straightforward to implement using sparse projections which leads to a reduced memory footprint and fast index construction. Furthermore, it enables grouping of the required computations into big matrix multiplications, which leads to additional savings due to cache effects and low-level parallelization. We demonstrate by extensive experiments on a wide variety of data sets that the method is faster than existing partitioning tree or hashing based approaches, making it the fastest available technique on high accuracy levels.
SAPE: A System for Situation-Aware Public Security Evaluation
Wu, Shu (Institute of Automation, Chinese Academy of Sciences) | Liu, Qiang (Institute of Automation, Chinese Academy of Sciences) | Bai, Ping (Institute of Automation, Chinese Academy of Sciences) | Wang, Liang (Institute of Automation, Chinese Academy of Sciences) | Tan, Tieniu (Institute of Automation, Chinese Academy of Sciences)
Public security events are occurring all over the world, bringing threat to personal and property safety, and homeland security. It is vital to construct an effective model to evaluate and predict the public security. In this work, we establish a Situation-Aware Public Security Evaluation (SAPE) platform. Based on conventional Recurrent Neural Networks (RNN), we develop a new variant of RNN to handle temporal contexts in public security event datasets. The proposed model can achieve better performance than the compared state-of-the-art methods. On SAPE, There are two parts of demonstrations, i.e., global public security evaluation and China public security evaluation. In the global part, based on Global Terrorism Database from UMD, for each country, SAPE can predict risk level and top-n potential terrorist organizations which might attack the country. The users can also view the actual attacking organizations and predicted results. For each province in China, SAPE can predict the risk level and the probability scores of different types of events in the next month. The users can also view the actual numbers of events and predicted risk levels of the past one year.
Predicting the Next Location: A Recurrent Model with Spatial and Temporal Contexts
Liu, Qiang (Institute of Automation, Chinese Academy of Sciences) | Wu, Shu ( Institute of Automation, Chinese Academy of Sciences ) | Wang, Liang ( Institute of Automation, Chinese Academy of Sciences ) | Tan, Tieniu ( Institute of Automation, Chinese Academy of Sciences )
Spatial and temporal contextual information plays a key role for analyzing user behaviors, and is helpful for predicting where he or she will go next. With the growing ability of collecting information, more and more temporal and spatial contextual information is collected in systems, and the location prediction problem becomes crucial and feasible. Some works have been proposed to address this problem, but they all have their limitations. Factorizing Personalized Markov Chain (FPMC) is constructed based on a strong independence assumption among different factors, which limits its performance. Tensor Factorization (TF) faces the cold start problem in predicting future actions. Recurrent Neural Networks (RNN) model shows promising performance comparing with PFMC and TF, but all these methods have problem in modeling continuous time interval and geographical distance. In this paper, we extend RNN and propose a novel method called Spatial Temporal Recurrent Neural Networks (ST-RNN). ST-RNN can model local temporal and spatial contexts in each layer with time-specific transition matrices for different time intervals and distance-specific transition matrices for different geographical distances. Experimental results show that the proposed ST-RNN model yields significant improvements over the competitive compared methods on two typical datasets, i.e., Global Terrorism Database (GTD) and Gowalla dataset.
Bidirectional Recurrent Convolutional Networks for Multi-Frame Super-Resolution
Huang, Yan, Wang, Wei, Wang, Liang
Super resolving a low-resolution video is usually handled by either single-image super-resolution (SR) or multi-frame SR. Single-Image SR deals with each video frame independently, and ignores intrinsic temporal dependency of video frames which actually plays a very important role in video super-resolution. Multi-Frame SR generally extracts motion information, e.g. optical flow, to model the temporal dependency, which often shows high computational cost. Considering that recurrent neural network (RNN) can model long-term contextual information of temporal sequences well, we propose a bidirectional recurrent convolutional network for efficient multi-frame SR.Different from vanilla RNN, 1) the commonly-used recurrent full connections are replaced with weight-sharing convolutional connections and 2) conditional convolutional connections from previous input layers to current hidden layer are added for enhancing visual-temporal dependency modelling. With the powerful temporal dependency modelling, our model can super resolve videos with complex motions and achieve state-of-the-art performance. Due to the cheap convolution operations, our model has a low computational complexity and runs orders of magnitude faster than other multi-frame methods.
COT: Contextual Operating Tensor for Context-Aware Recommender Systems
Liu, Qiang (Institute of Automation, Chinese Academy of Sciences) | Wu, Shu (Institute of Automation, Chinese Academy of Sciences) | Wang, Liang (Institute of Automation, Chinese Academy of Sciences)
With rapid growth of information on the internet, recommender systems become fundamental for helping users alleviate the problem of information overload. Since contextual information can be used as a significant factor in modeling user behavior, various context-aware recommendation methods are proposed. However, the state-of-the-art context modeling methods treat contexts as other dimensions similar to the dimensions of users and items, and cannot capture the special semantic operation of contexts. On the other hand, some works on multi-domain relation prediction can be used for the context-aware recommendation, but they have problems in generating recommendation under a large amount of contextual information. In this work, we propose Contextual Operating Tensor (COT) model, which represents the common semantic effects of contexts as a contextual operating tensor and represents a context as a latent vector. Then, to model the semantic operation of a context combination, we generate contextual operating matrix from the contextual operating tensor and latent vectors of contexts. Thus latent vectors of users and items can be operated by the contextual operating matrices. Experimental results show that the proposed COT model yields significant improvements over the competitive compared methods on three typical datasets, i.e., Food, Adom and Movielens-1M datasets.
Relevance Topic Model for Unstructured Social Group Activity Recognition
Zhao, Fang, Huang, Yongzhen, Wang, Liang, Tan, Tieniu
Unstructured social group activity recognition in web videos is a challenging task due to 1) the semantic gap between class labels and low-level visual features and 2) the lack of labeled training data. To tackle this problem, we propose a "relevance topic model" for jointly learning meaningful mid-level representations upon bag-of-words (BoW) video representations and a classifier with sparse weights. In our approach, sparse Bayesian learning is incorporated into an undirected topic model (i.e., Replicated Softmax) to discover topics which are relevant to video classes and suitable for prediction. Rectified linear units are utilized to increase the expressive power of topics so as to explain better video data containing complex contents and make variational inference tractable for the proposed model. An efficient variational EM algorithm is presented for model parameter estimation and inference. Experimental results on the Unstructured Social Activity Attribute dataset show that our model achieves state of the art performance and outperforms other supervised topic model in terms of classification accuracy, particularly in the case of a very small number of labeled training videos.