Goto

Collaborating Authors

 Wang, Junhui


Sparse Learning in reproducing kernel Hilbert space

arXiv.org Machine Learning

Sparse learning aims to learn the sparse structure of the true target function from the collected data, which plays a crucial role in high dimensional data analysis. This article proposes a unified and universal method for learning sparsity of M-estimators within a rich family of loss functions in a reproducing kernel Hilbert space (RKHS). The family of loss functions interested is very rich, including most commonly used ones in literature. More importantly, the proposed method is motivated by some nice properties in the induced RKHS, and is computationally efficient for large-scale data, and can be further improved through parallel computing. The asymptotic estimation and selection consistencies of the proposed method are established for a general loss function under mild conditions. It works for general loss function, admits general dependence structure, allows for efficient computation, and with theoretical guarantee. The superior performance of our proposed method is also supported by a variety of simulated examples and a real application in the human breast cancer study (GSE20194).


Scalable kernel-based variable selection with sparsistency

arXiv.org Machine Learning

Variable selection is central to high-dimensional data analysis, and various algorithms have been developed. Ideally, a variable selection algorithm shall be flexible, scalable, and with theoretical guarantee, yet most existing algorithms cannot attain these properties at the same time. In this article, a three-step variable selection algorithm is developed, involving kernel-based estimation of the regression function and its gradient functions as well as a hard thresholding. Its key advantage is that it assumes no explicit model assumption, admits general predictor effects, allows for scalable computation, and attains desirable asymptotic sparsistency. The proposed algorithm can be adapted to any reproducing kernel Hilbert space (RKHS) with different kernel functions, and can be extended to interaction selection with slight modification. Its computational cost is only linear in the data dimension, and can be further improved through parallel computing. The sparsistency of the proposed algorithm is established for general RKHS under mild conditions, including linear and Gaussian kernels as special cases. Its effectiveness is also supported by a variety of simulated and real examples.


Consistent selection of tuning parameters via variable selection stability

arXiv.org Machine Learning

Penalized regression models are popularly used in high-dimensional data analysis to conduct variable selection and model fitting simultaneously. Whereas success has been widely reported in literature, their performances largely depend on the tuning parameters that balance the trade-off between model fitting and model sparsity. Existing tuning criteria mainly follow the route of minimizing the estimated prediction error or maximizing the posterior model probability, such as cross-validation, AIC and BIC. This article introduces a general tuning parameter selection criterion based on a novel concept of variable selection stability. The key idea is to select the tuning parameters so that the resultant penalized regression model is stable in variable selection. The asymptotic selection consistency is established for both fixed and diverging dimensions. The effectiveness of the proposed criterion is also demonstrated in a variety of simulated examples as well as an application to the prostate cancer data.


An efficient model-free estimation of multiclass conditional probability

arXiv.org Machine Learning

Conventional multiclass conditional probability estimation methods, such as Fisher's discriminate analysis and logistic regression, often require restrictive distributional model assumption. In this paper, a model-free estimation method is proposed to estimate multiclass conditional probability through a series of conditional quantile regression functions. Specifically, the conditional class probability is formulated as difference of corresponding cumulative distribution functions, where the cumulative distribution functions can be converted from the estimated conditional quantile regression functions. The proposed estimation method is also efficient as its computation cost does not increase exponentially with the number of classes. The theoretical and numerical studies demonstrate that the proposed estimation method is highly competitive against the existing competitors, especially when the number of classes is relatively large.


Joint estimation of sparse multivariate regression and conditional graphical models

arXiv.org Machine Learning

Multivariate regression model is a natural generalization of the classical univari- ate regression model for fitting multiple responses. In this paper, we propose a high- dimensional multivariate conditional regression model for constructing sparse estimates of the multivariate regression coefficient matrix that accounts for the dependency struc- ture among the multiple responses. The proposed method decomposes the multivariate regression problem into a series of penalized conditional log-likelihood of each response conditioned on the covariates and other responses. It allows simultaneous estimation of the sparse regression coefficient matrix and the sparse inverse covariance matrix. The asymptotic selection consistency and normality are established for the diverging dimension of the covariates and number of responses. The effectiveness of the pro- posed method is also demonstrated in a variety of simulated examples as well as an application to the Glioblastoma multiforme cancer data.


A note on selection stability: combining stability and prediction

arXiv.org Machine Learning

Recently, many regularized procedures have been proposed for variable selection in linear regression, but their performance depends on the tuning parameter selection. Here a criterion for the tuning parameter selection is proposed, which combines the strength of both stability selection and cross-validation and therefore is referred as the prediction and stability selection (PASS). The selection consistency is established assuming the data generating model is a subset of the full model, and the small sample performance is demonstrated through some simulation studies where the assumption is either held or violated.