Goto

Collaborating Authors

 Wang, Jun


Natural Language Reinforcement Learning

arXiv.org Artificial Intelligence

Reinforcement Learning (RL) mathematically formulates decision-making with Markov Decision Process (MDP). With MDPs, researchers have achieved remarkable breakthroughs across various domains, including games, robotics, and language models. This paper seeks a new possibility, Natural Language Reinforcement Learning (NLRL), by extending traditional MDP to natural language-based representation space. Specifically, NLRL innovatively redefines RL principles, including task objectives, policy, value function, Bellman equation, and policy iteration, into their language counterparts. With recent advancements in large language models (LLMs), NLRL can be practically implemented to achieve RL-like policy and value improvement by either pure prompting or gradient-based training. Experiments over Maze, Breakthrough, and Tic-Tac-Toe games demonstrate the effectiveness, efficiency, and interpretability of the NLRL framework among diverse use cases. Our code will be released at https://github.com/waterhorse1/Natural-language-RL.


Direct Preference Optimization Using Sparse Feature-Level Constraints

arXiv.org Artificial Intelligence

The alignment of large language models (LLMs) with human preferences remains a key challenge. While post-training techniques like Reinforcement Learning from Human Feedback (RLHF) and Direct Preference Optimization (DPO) have achieved notable success, they often experience computational inefficiencies and training instability. In this paper, we propose Feature-level constrained Preference Optimization (FPO), a novel method designed to simplify the alignment process while ensuring stability. FPO leverages pre-trained Sparse Autoencoders (SAEs) and introduces feature-level constraints, allowing for efficient, sparsity-enforced alignment. Our approach enjoys efficiency by using sparse features activated in a well-trained sparse autoencoder and the quality of sequential KL divergence by using the feature-level offline reference. Experimental results on benchmark datasets demonstrate that FPO achieves an above 5% absolute improvement in win rate with much lower computational cost compared to state-of-the-art baselines, making it a promising solution for efficient and controllable LLM alignments. Aligning large language models (LLMs) with human values and practical objectives is a critical challenge in AI development (Wang et al., 2023). Post-training methods, including fine-tuning (Wei et al., 2022; Chung et al., 2024) and alignment strategies (Tunstall et al., 2023), have played a significant role in refining LLM behavior. Among these, Reinforcement Learning from Human Feedback (RLHF) (Christiano et al., 2017; Ouyang et al., 2022) has emerged as a leading technique, integrating human feedback to guide models towards producing valuable and useful outputs.


Adaptive Conditional Expert Selection Network for Multi-domain Recommendation

arXiv.org Artificial Intelligence

Mixture-of-Experts (MOE) has recently become the de facto standard in Multi-domain recommendation (MDR) due to its powerful expressive ability. However, such MOE-based method typically employs all experts for each instance, leading to scalability issue and low-discriminability between domains and experts. Furthermore, the design of commonly used domain-specific networks exacerbates the scalability issues. To tackle the problems, We propose a novel method named CESAA consists of Conditional Expert Selection (CES) Module and Adaptive Expert Aggregation (AEA) Module to tackle these challenges. Specifically, CES first combines a sparse gating strategy with domain-shared experts. Then AEA utilizes mutual information loss to strengthen the correlations between experts and specific domains, and significantly improve the distinction between experts. As a result, only domain-shared experts and selected domain-specific experts are activated for each instance, striking a balance between computational efficiency and model performance. Experimental results on both public ranking and industrial retrieval datasets verify the effectiveness of our method in MDR tasks.


BLIP3-KALE: Knowledge Augmented Large-Scale Dense Captions

arXiv.org Artificial Intelligence

Table 1: Comparison of open-source synthetic image-text datasets: We compare various datasets in terms of scale (number of samples), density (average number of words per sample), whether they are knowledge-augmented (meaning that the caption includes information found in image's web scraped alt-text), and the size of the captioning model used to generate the descriptions. For KALE, we create an initial pool of 100M captions from a 17B parameter model and use it to distill a 2B parameter model that matches the performance of the larger 17B model. We introduce BLIP3-KALE, a dataset of 218 million image-text pairs that advances the state of knowledge-augmented image captioning. KALE builds upon recent work in this area, particularly CapsFusion [28], which pioneered the use of large language models to fuse synthetically generated captions with alt-text to incorporate real-world knowledge.


Proprioceptive and Exteroceptive Information Perception in a Fabric Soft Robotic Arm via Physical Reservoir Computing with minimal training data

arXiv.org Artificial Intelligence

Over the past decades, we have witnessed a rapid emergence of soft and reconfigurable robots thanks to their capability to interact safely with humans and adapt to complex environments. However, their softness makes accurate control very challenging. High-fidelity sensing is critical in improving control performance, especially posture and contact estimation. To this end, traditional camera-based sensors and load cells have limited portability and accuracy, and they will inevitably increase the robot's cost and weight. In this study, instead of using specialized sensors, we only collect distributed pressure data inside a pneumatics-driven soft arm and apply the physical reservoir computing principle to simultaneously predict its kinematic posture (i.e., bending angle) and payload status (i.e., payload mass). Our results show that, with careful readout training, one can obtain accurate bending angle and payload mass predictions via simple, weighted linear summations of pressure readings. In addition, our comparative analysis shows that, to guarantee low prediction errors within 10\%, bending angle prediction requires less training data than payload prediction. This result reveals that balanced linear and nonlinear body dynamics are critical for the physical reservoir to accomplish complex proprioceptive and exteroceptive information perception tasks. Finally, the method of exploring the most efficient readout training methods presented in this paper could be extended to other soft robotic systems to maximize their perception capabilities.


Large Language Models Orchestrating Structured Reasoning Achieve Kaggle Grandmaster Level

arXiv.org Artificial Intelligence

We introduce Agent K v1.0, an end-to-end autonomous data science agent designed to automate, optimise, and generalise across diverse data science tasks. Fully automated, Agent K v1.0 manages the entire data science life cycle by learning from experience. It leverages a highly flexible structured reasoning framework to enable it to dynamically process memory in a nested structure, effectively learning from accumulated experience stored to handle complex reasoning tasks. It optimises long- and short-term memory by selectively storing and retrieving key information, guiding future decisions based on environmental rewards. This iterative approach allows it to refine decisions without fine-tuning or backpropagation, achieving continuous improvement through experiential learning. We evaluate our agent's apabilities using Kaggle competitions as a case study. Following a fully automated protocol, Agent K v1.0 systematically addresses complex and multimodal data science tasks, employing Bayesian optimisation for hyperparameter tuning and feature engineering. Our new evaluation framework rigorously assesses Agent K v1.0's end-to-end capabilities to generate and send submissions starting from a Kaggle competition URL. Results demonstrate that Agent K v1.0 achieves a 92.5\% success rate across tasks, spanning tabular, computer vision, NLP, and multimodal domains. When benchmarking against 5,856 human Kaggle competitors by calculating Elo-MMR scores for each, Agent K v1.0 ranks in the top 38\%, demonstrating an overall skill level comparable to Expert-level users. Notably, its Elo-MMR score falls between the first and third quartiles of scores achieved by human Grandmasters. Furthermore, our results indicate that Agent K v1.0 has reached a performance level equivalent to Kaggle Grandmaster, with a record of 6 gold, 3 silver, and 7 bronze medals, as defined by Kaggle's progression system.


ALISE: Accelerating Large Language Model Serving with Speculative Scheduling

arXiv.org Artificial Intelligence

Large Language Models (LLMs) represent a revolutionary advancement in the contemporary landscape of artificial general intelligence (AGI). As exemplified by ChatGPT, LLM-based applications necessitate minimal response latency and maximal throughput for inference serving. However, due to the unpredictability of LLM execution, the first-come-first-serve (FCFS) scheduling policy employed by current LLM serving systems suffers from head-of-line (HoL) blocking issues and long job response times. In this paper, we propose a new efficient LLM inference serving framework, named ALISE. The key design paradigm of ALISE is to leverage a novel speculative scheduler by estimating the execution time for each job and exploiting such prior knowledge to assign appropriate job priority orders, thus minimizing potential queuing delays for heterogeneous workloads. Furthermore, to mitigate the memory overhead of the intermediate key-value (KV) cache, we employ a priority-based adaptive memory management protocol and quantization-based compression techniques. Evaluations demonstrate that in comparison to the state-of-the-art solution vLLM, ALISE improves the throughput of inference serving by up to 1.8x and 2.1x under the same latency constraint on the Alpaca and ShareGPT datasets, respectively.


UFT: Unifying Fine-Tuning of SFT and RLHF/DPO/UNA through a Generalized Implicit Reward Function

arXiv.org Artificial Intelligence

By pretraining on trillions of tokens, an LLM gains the capability of text generation. However, to enhance its utility and reduce potential harm, SFT and alignment are applied sequentially to the pretrained model. Due to the differing nature and objective functions of SFT and alignment, catastrophic forgetting has become a significant issue. To address this, we introduce Unified Fine-Tuning (UFT), which integrates SFT and alignment into a single training stage using the same objective and loss functions through an implicit reward function. Our experimental results demonstrate that UFT outperforms SFT on instruction-tuning data alone. Moreover, when combining instruction-tuning data with alignment data, UFT effectively prevents catastrophic forgetting across these two stages and shows a clear advantage over sequentially applying SFT and alignment. This is evident in the significant improvements observed in the \textbf{ifeval} task for instruction-following and the \textbf{truthful-qa} task for factuality. The proposed general fine-tuning framework UFT establishes an effective and efficient pretraining-UFT paradigm for LLM training.


FOOGD: Federated Collaboration for Both Out-of-distribution Generalization and Detection

arXiv.org Artificial Intelligence

Federated learning (FL) is a promising machine learning paradigm that collaborates with client models to capture global knowledge. However, deploying FL models in real-world scenarios remains unreliable due to the coexistence of in-distribution data and unexpected out-of-distribution (OOD) data, such as covariate-shift and semantic-shift data. Current FL researches typically address either covariate-shift data through OOD generalization or semantic-shift data via OOD detection, overlooking the simultaneous occurrence of various OOD shifts. In this work, we propose FOOGD, a method that estimates the probability density of each client and obtains reliable global distribution as guidance for the subsequent FL process. Firstly, SM3D in FOOGD estimates score model for arbitrary distributions without prior constraints, and detects semantic-shift data powerfully. Then SAG in FOOGD provides invariant yet diverse knowledge for both local covariate-shift generalization and client performance generalization. In empirical validations, FOOGD significantly enjoys three main advantages: (1) reliably estimating non-normalized decentralized distributions, (2) detecting semantic shift data via score values, and (3) generalizing to covariate-shift data by regularizing feature extractor. The prejoct is open in https://github.com/XeniaLLL/FOOGD-main.git.


Lightweight Neural App Control

arXiv.org Artificial Intelligence

This paper introduces a novel mobile phone control architecture, termed "app agents", for efficient interactions and controls across various Android apps. The proposed Lightweight Multi-modal App Control (LiMAC) takes as input a textual goal and a sequence of past mobile observations, such as screenshots and corresponding UI trees, to generate precise actions. To address the computational constraints inherent to smartphones, within LiMAC, we introduce a small Action Transformer (AcT) integrated with a fine-tuned vision-language model (VLM) for real-time decision-making and task execution. We evaluate LiMAC on two open-source mobile control datasets, demonstrating the superior performance of our small-form-factor approach against fine-tuned versions of open-source VLMs, such as Florence2 and Qwen2-VL. It also significantly outperforms prompt engineering baselines utilising closed-source foundation models like GPT-4o. More specifically, LiMAC increases the overall action accuracy by up to 19% compared to fine-tuned VLMs, and up to 42% compared to prompt-engineering baselines. Smartphone application agents, commonly known as app agents, are expanding the potential applications of artificial intelligence to smartphones and other mobile devices. Such agents could allow users to accomplish a range of tasks, from scheduling appointments and sending messages to purchasing items and booking flights, with minimal effort. Fundamentally, app agents observe user instructions and progressively interact with the smartphone's user interface--by clicking, scrolling, inputting text, etc.--to accomplish the task. However, due to the limited computational resources of smartphones, these agents must be optimised for efficiency, employing lightweight models with minimal memory usage and fast processing speeds. Recent advancements have leveraged foundation models to develop app agents that understand natural language instructions and execute complex user commands within the smartphone's interface (e.g., Rawles et al., 2024; Bai et al., 2024; Wang et al., 2024b;a).