Goto

Collaborating Authors

 Wang, Jinqiao


The BRAVO Semantic Segmentation Challenge Results in UNCV2024

arXiv.org Artificial Intelligence

We propose the unified BRAVO challenge to benchmark the reliability of semantic segmentation models under realistic perturbations and unknown out-of-distribution (OOD) scenarios. We define two categories of reliability: (1) semantic reliability, which reflects the model's accuracy and calibration when exposed to various perturbations; and (2) OOD reliability, which measures the model's ability to detect object classes that are unknown during training. The challenge attracted nearly 100 submissions from international teams representing notable research institutions. The results reveal interesting insights into the importance of large-scale pre-training and minimal architectural design in developing robust and reliable semantic segmentation models.


Enhancing Text-to-SQL Capabilities of Large Language Models via Domain Database Knowledge Injection

arXiv.org Artificial Intelligence

Text-to-SQL is a subtask in semantic parsing that has seen rapid progress with the evolution of Large Language Models (LLMs). However, LLMs face challenges due to hallucination issues and a lack of domain-specific database knowledge(such as table schema and cell values). As a result, they can make errors in generating table names, columns, and matching values to the correct columns in SQL statements. This paper introduces a method of knowledge injection to enhance LLMs' ability to understand schema contents by incorporating prior knowledge. This approach improves their performance in Text-to-SQL tasks. Experimental results show that pre-training LLMs on domain-specific database knowledge and fine-tuning them on downstream Text-to-SQL tasks significantly improves the Execution Match (EX) and Exact Match (EM) metrics across various models. This effectively reduces errors in generating column names and matching values to the columns. Furthermore, the knowledge-injected models can be applied to many downstream Text-to-SQL tasks, demonstrating the generalizability of the approach presented in this paper.


Recurrent Context Compression: Efficiently Expanding the Context Window of LLM

arXiv.org Artificial Intelligence

To extend the context length of Transformer-based large language models (LLMs) and improve comprehension capabilities, we often face limitations due to computational resources and bounded memory storage capacity. This work introduces a method called Recurrent Context Compression (RCC), designed to efficiently expand the context window length of LLMs within constrained storage space. We also investigate the issue of poor model responses when both instructions and context are compressed in downstream tasks, and propose an instruction reconstruction method to mitigate this problem. We validated the effectiveness of our approach on multiple tasks, achieving a compression rate of up to 32x on text reconstruction tasks with a BLEU4 score close to 0.95, and nearly 100\% accuracy on a passkey retrieval task with a sequence length of 1M. Finally, our method demonstrated competitive performance in long-text question-answering tasks compared to non-compressed methods, while significantly saving storage resources in long-text inference tasks. Our code, models, and demo are available at https://github.com/WUHU-G/RCC_Transformer


Pattern-Aware Chain-of-Thought Prompting in Large Language Models

arXiv.org Artificial Intelligence

Chain-of-thought (CoT) prompting can guide language models to engage in complex multi-step reasoning. The quality of provided demonstrations significantly impacts the success of downstream inference tasks. While existing automated methods prioritize accuracy and semantics in these demonstrations, we show that the underlying reasoning patterns play a more crucial role in such tasks. In this paper, we propose Pattern-Aware CoT, a prompting method that considers the diversity of demonstration patterns. By incorporating patterns such as step length and reasoning process within intermediate steps, PA-CoT effectively mitigates the issue of bias induced by demonstrations and enables better generalization to diverse scenarios. We conduct experiments on nine reasoning benchmark tasks using two open-source LLMs. The results show that our method substantially enhances reasoning performance and exhibits robustness to errors. The code will be made publicly available.


FiLo: Zero-Shot Anomaly Detection by Fine-Grained Description and High-Quality Localization

arXiv.org Artificial Intelligence

Zero-shot anomaly detection (ZSAD) methods entail detecting anomalies directly without access to any known normal or abnormal samples within the target item categories. Existing approaches typically rely on the robust generalization capabilities of multimodal pretrained models, computing similarities between manually crafted textual features representing "normal" or "abnormal" semantics and image features to detect anomalies and localize anomalous patches. However, the generic descriptions of "abnormal" often fail to precisely match diverse types of anomalies across different object categories. Additionally, computing feature similarities for single patches struggles to pinpoint specific locations of anomalies with various sizes and scales. To address these issues, we propose a novel ZSAD method called FiLo, comprising two components: adaptively learned Fine-Grained Description (FG-Des) and position-enhanced High-Quality Localization (HQ-Loc). FG-Des introduces fine-grained anomaly descriptions for each category using Large Language Models (LLMs) and employs adaptively learned textual templates to enhance the accuracy and interpretability of anomaly detection. HQ-Loc, utilizing Grounding DINO for preliminary localization, position-enhanced text prompts, and Multi-scale Multi-shape Cross-modal Interaction (MMCI) module, facilitates more accurate localization of anomalies of different sizes and shapes. Experimental results on datasets like MVTec and VisA demonstrate that FiLo significantly improves the performance of ZSAD in both detection and localization, achieving state-of-the-art performance with an image-level AUC of 83.9% and a pixel-level AUC of 95.9% on the VisA dataset.


Griffon v2: Advancing Multimodal Perception with High-Resolution Scaling and Visual-Language Co-Referring

arXiv.org Artificial Intelligence

Large Vision Language Models have achieved fine-grained object perception, but the limitation of image resolution remains a significant obstacle to surpass the performance of task-specific experts in complex and dense scenarios. Such limitation further restricts the model's potential to achieve nuanced visual and language referring in domains such as GUI Agents, Counting and \etc. To address this issue, we introduce a unified high-resolution generalist model, Griffon v2, enabling flexible object referring with visual and textual prompts. To efficiently scaling up image resolution, we design a simple and lightweight down-sampling projector to overcome the input tokens constraint in Large Language Models. This design inherently preserves the complete contexts and fine details, and significantly improves multimodal perception ability especially for small objects. Building upon this, we further equip the model with visual-language co-referring capabilities through a plug-and-play visual tokenizer. It enables user-friendly interaction with flexible target images, free-form texts and even coordinates. Experiments demonstrate that Griffon v2 can localize any objects of interest with visual and textual referring, achieve state-of-the-art performance on REC, phrase grounding, and REG tasks, and outperform expert models in object detection and object counting. Data, codes and models will be released at https://github.com/jefferyZhan/Griffon.


PFDM: Parser-Free Virtual Try-on via Diffusion Model

arXiv.org Artificial Intelligence

Virtual try-on can significantly improve the garment shopping experiences in both online and in-store scenarios, attracting broad interest in computer vision. However, to achieve high-fidelity try-on performance, most state-of-the-art methods still rely on accurate segmentation masks, which are often produced by near-perfect parsers or manual labeling. To overcome the bottleneck, we propose a parser-free virtual try-on method based on the diffusion model (PFDM). Given two images, PFDM can "wear" garments on the target person seamlessly by implicitly warping without any other information. To learn the model effectively, we synthesize many pseudo-images and construct sample pairs by wearing various garments on persons. Supervised by the large-scale expanded dataset, we fuse the person and garment features using a proposed Garment Fusion Attention (GFA) mechanism. Experiments demonstrate that our proposed PFDM can successfully handle complex cases, synthesize high-fidelity images, and outperform both state-of-the-art parser-free and parser-based models.


Fluctuation-based Adaptive Structured Pruning for Large Language Models

arXiv.org Artificial Intelligence

Network Pruning is a promising way to address the huge computing resource demands of the deployment and inference of Large Language Models (LLMs). Retraining-free is important for LLMs' pruning methods. However, almost all of the existing retraining-free pruning approaches for LLMs focus on unstructured pruning, which requires specific hardware support for acceleration. In this paper, we propose a novel retraining-free structured pruning framework for LLMs, named FLAP (FLuctuation-based Adaptive Structured Pruning). It is hardware-friendly by effectively reducing storage and enhancing inference speed. For effective structured pruning of LLMs, we highlight three critical elements that demand the utmost attention: formulating structured importance metrics, adaptively searching the global compressed model, and implementing compensation mechanisms to mitigate performance loss. First, FLAP determines whether the output feature map is easily recoverable when a column of weight is removed, based on the fluctuation pruning metric. Then it standardizes the importance scores to adaptively determine the global compressed model structure. At last, FLAP adds additional bias terms to recover the output feature maps using the baseline values. We thoroughly evaluate our approach on a variety of language benchmarks. Without any retraining, our method significantly outperforms the state-of-the-art methods, including LLM-Pruner and the extension of Wanda in structured pruning. The code is released at https://github.com/CASIA-IVA-Lab/FLAP.


Continual Instruction Tuning for Large Multimodal Models

arXiv.org Artificial Intelligence

Instruction tuning is now a widely adopted approach to aligning large multimodal models (LMMs) to follow human intent. It unifies the data format of vision-language tasks, enabling multi-task joint training. However, vision-language tasks are constantly being created in practice. Instead of always re-training LMMs when new tasks arrive, continual learning offers flexibility for models to continually and efficiently exploit the evolving data. This work aims to explore the following two questions: 1) Do LMMs still suffer from catastrophic forgetting in continual instruction tuning? 2) Are the existing three classes of continual learning methods still applicable to the continual instruction tuning of LMMs? An extensive study is conducted to address the above questions. First, we establish the first benchmark in this setting and reveal that catastrophic forgetting is still observed when continually instruction-tuning LMMs. However, the multi-task joint instruction tuning can facilitate the model's continual learning ability and mitigate forgetting. Second, we integrate and adapt classic continual learning methods to our context, demonstrating the efficacy of data replay and model expansion strategies across diverse scenarios. In contrast, regularization-based methods only perform well on models that have been jointly instruction-tuned on multiple tasks. Third, we delve into the correlation and forgetting dynamics between vision-language task pairs and propose task-similarity-informed regularization and model expansion methods for continual instruction tuning of LMMs. Experimental results show that our approach consistently boosts the model's performance.


Griffon: Spelling out All Object Locations at Any Granularity with Large Language Models

arXiv.org Artificial Intelligence

Replicating the innate human ability to detect all objects based on free-form texts at any granularity remains a formidable challenge for Vision-Language models. Current Large Vision Language Models (LVLMs) are predominantly constrained to grounding a single, pre-existing object, relying solely on data from Referring Expression Comprehension tasks. The limitation leads to a compromise in model design, necessitating the introduction of visual expert models or the integration of customized head structures. Beyond these constraints, our research delves into the untapped potential of LVLMs and uncover their inherent capability for basic object perception, allowing them to accurately identify and locate objects of interest. Building on this insight, we introduce a novel language-prompted localization dataset designed to fully unleash the capabilities of LVLMs in integrating fine-grained object perception with precise location awareness. More importantly, we present $\textbf{Griffon}$, a purely LVLM-based baseline, which does not require the introduction of any special tokens, expert models, or additional detection modules. It simply maintains a consistent structure with popular LVLMs by unifying data formats across various localization-related scenarios and is trained end-to-end through a well-designed pipeline. Comprehensive experiments demonstrate that $\textbf{Griffon}$ not only achieves state-of-the-art performance on the fine-grained RefCOCO series but also approaches the capabilities of the expert model Faster RCNN on the detection benchmark MSCOCO.