Wang, Jingyuan
Continuous Trajectory Generation Based on Two-Stage GAN
Jiang, Wenjun, Zhao, Wayne Xin, Wang, Jingyuan, Jiang, Jiawei
Simulating the human mobility and generating large-scale trajectories are of great use in many real-world applications, such as urban planning, epidemic spreading analysis, and geographic privacy protect. Although many previous works have studied the problem of trajectory generation, the continuity of the generated trajectories has been neglected, which makes these methods useless for practical urban simulation scenarios. To solve this problem, we propose a novel two-stage generative adversarial framework to generate the continuous trajectory on the road network, namely TS-TrajGen, which efficiently integrates prior domain knowledge of human mobility with model-free learning paradigm. Specifically, we build the generator under the human mobility hypothesis of the A* algorithm to learn the human mobility behavior. For the discriminator, we combine the sequential reward with the mobility yaw reward to enhance the effectiveness of the generator. Finally, we propose a novel two-stage generation process to overcome the weak point of the existing stochastic generation process. Extensive experiments on two real-world datasets and two case studies demonstrate that our framework yields significant improvements over the state-of-the-art methods.
Spatio-Temporal Self-Supervised Learning for Traffic Flow Prediction
Ji, Jiahao, Wang, Jingyuan, Huang, Chao, Wu, Junjie, Xu, Boren, Wu, Zhenhe, Zhang, Junbo, Zheng, Yu
Robust prediction of citywide traffic flows at different time periods plays a crucial role in intelligent transportation systems. While previous work has made great efforts to model spatio-temporal correlations, existing methods still suffer from two key limitations: i) Most models collectively predict all regions' flows without accounting for spatial heterogeneity, i.e., different regions may have skewed traffic flow distributions. ii) These models fail to capture the temporal heterogeneity induced by time-varying traffic patterns, as they typically model temporal correlations with a shared parameterized space for all time periods. To tackle these challenges, we propose a novel Spatio-Temporal Self-Supervised Learning (ST-SSL) traffic prediction framework which enhances the traffic pattern representations to be reflective of both spatial and temporal heterogeneity, with auxiliary self-supervised learning paradigms. Specifically, our ST-SSL is built over an integrated module with temporal and spatial convolutions for encoding the information across space and time. To achieve the adaptive spatio-temporal self-supervised learning, our ST-SSL first performs the adaptive augmentation over the traffic flow graph data at both attribute- and structure-levels. On top of the augmented traffic graph, two SSL auxiliary tasks are constructed to supplement the main traffic prediction task with spatial and temporal heterogeneity-aware augmentation. Experiments on four benchmark datasets demonstrate that ST-SSL consistently outperforms various state-of-the-art baselines. Since spatio-temporal heterogeneity widely exists in practical datasets, the proposed framework may also cast light on other spatial-temporal applications. Model implementation is available at https://github.com/Echo-Ji/ST-SSL.
Empowering A* Search Algorithms with Neural Networks for Personalized Route Recommendation
Wang, Jingyuan, Wu, Ning, Zhao, Wayne Xin, Peng, Fanzhang, Lin, Xin
Personalized Route Recommendation (PRR) aims to generate user-specific route suggestions in response to users' route queries. Early studies cast the PRR task as a pathfinding problem on graphs, and adopt adapted search algorithms by integrating heuristic strategies. Although these methods are effective to some extent, they require setting the cost functions with heuristics. In addition, it is difficult to utilize useful context information in the search procedure. To address these issues, we propose using neural networks to automatically learn the cost functions of a classic heuristic algorithm, namely A* algorithm, for the PRR task. Our model consists of two components. First, we employ attention-based Recurrent Neural Networks (RNN) to model the cost from the source to the candidate location by incorporating useful context information. Instead of learning a single cost value, the RNN component is able to learn a time-varying vectorized representation for the moving state of a user. Second, we propose to use a value network for estimating the cost from a candidate location to the destination. For capturing structural characteristics, the value network is built on top of improved graph attention networks by incorporating the moving state of a user and other context information. The two components are integrated in a principled way for deriving a more accurate cost of a candidate location. Extensive experiment results on three real-world datasets have shown the effectiveness and robustness of the proposed model.
Decision Making with Machine Learning and ROC Curves
Feng, Kai, Hong, Han, Tang, Ke, Wang, Jingyuan
The Receiver Operating Characteristic (ROC) curve is a representation of the statistical information discovered in binary classification problems and is a key concept in machine learning and data science. This paper studies the statistical properties of ROC curves and its implication on model selection. We analyze the implications of different models of incentive heterogeneity and information asymmetry on the relation between human decisions and the ROC curves. Our theoretical discussion is illustrated in the context of a large data set of pregnancy outcomes and doctor diagnosis from the Pre-Pregnancy Checkups of reproductive age couples in Henan Province provided by the Chinese Ministry of Health.
Understanding Urban Dynamics via Context-aware Tensor Factorization with Neighboring Regularization
Wang, Jingyuan, Wu, Junjie, Gao, Fei, Xiong, Zhang
Recent years have witnessed the world-wide emergence of mega-metropolises with incredibly huge populations. Understanding residents mobility patterns, or urban dynamics, thus becomes crucial for building modern smart cities. In this paper, we propose a Neighbor-Regularized and context-aware Non-negative Tensor Factorization model (NR-cNTF) to discover interpretable urban dynamics from urban heterogeneous data. Different from many existing studies concerned with prediction tasks via tensor completion, NR-cNTF focuses on gaining urban managerial insights from spatial, temporal, and spatio-temporal patterns. This is enabled by high-quality Tucker factorizations regularized by both POI-based urban contexts and geographically neighboring relations. NR-cNTF is also capable of unveiling long-term evolutions of urban dynamics via a pipeline initialization approach. We apply NR-cNTF to a real-life data set containing rich taxi GPS trajectories and POI records of Beijing. The results indicate: 1) NR-cNTF accurately captures four kinds of city rhythms and seventeen spatial communities; 2) the rapid development of Beijing, epitomized by the CBD area, indeed intensifies the job-housing imbalance; 3) the southern areas with recent government investments have shown more healthy development tendency. Finally, NR-cNTF is compared with some baselines on traffic prediction, which further justifies the importance of urban contexts awareness and neighboring regulations.
SVM-based Deep Stacking Networks
Wang, Jingyuan, Feng, Kai, Wu, Junjie
The deep network model, with the majority built on neural networks, has been proved to be a powerful framework to represent complex data for high performance machine learning. In recent years, more and more studies turn to nonneural network approaches to build diverse deep structures, and the Deep Stacking Network (DSN) model is one of such approaches that uses stacked easy-to-learn blocks to build a parameter-training-parallelizable deep network. In this paper, we propose a novel SVM-based Deep Stacking Network (SVM-DSN), which uses the DSN architecture to organize linear SVM classifiers for deep learning. A BP-like layer tuning scheme is also proposed to ensure holistic and local optimizations of stacked SVMs simultaneously. Some good math properties of SVM, such as the convex optimization, is introduced into the DSN framework by our model. From a global view, SVM-DSN can iteratively extract data representations layer by layer as a deep neural network but with parallelizability, and from a local view, each stacked SVM can converge to its optimal solution and obtain the support vectors, which compared with neural networks could lead to interesting improvements in anti-saturation and interpretability. Experimental results on both image and text data sets demonstrate the excellent performances of SVM-DSN compared with some competitive benchmark models.
Multilevel Wavelet Decomposition Network for Interpretable Time Series Analysis
Wang, Jingyuan, Wang, Ze, Li, Jianfeng, Wu, Junjie
Recent years have witnessed the unprecedented rising of time series from almost all kindes of academic and industrial fields. Various types of deep neural network models have been introduced to time series analysis, but the important frequency information is yet lack of effective modeling. In light of this, in this paper we propose a wavelet-based neural network structure called multilevel Wavelet Decomposition Network (mWDN) for building frequency-aware deep learning models for time series analysis. mWDN preserves the advantage of multilevel discrete wavelet decomposition in frequency learning while enables the fine-tuning of all parameters under a deep neural network framework. Based on mWDN, we further propose two deep learning models called Residual Classification Flow (RCF) and multi-frequecy Long Short-Term Memory (mLSTM) for time series classification and forecasting, respectively. The two models take all or partial mWDN decomposed sub-series in different frequencies as input, and resort to the back propagation algorithm to learn all the parameters globally, which enables seamless embedding of wavelet-based frequency analysis into deep learning frameworks. Extensive experiments on 40 UCR datasets and a real-world user volume dataset demonstrate the excellent performance of our time series models based on mWDN. In particular, we propose an importance analysis method to mWDN based models, which successfully identifies those time-series elements and mWDN layers that are crucially important to time series analysis. This indeed indicates the interpretability advantage of mWDN, and can be viewed as an indepth exploration to interpretable deep learning.
CD-CNN: A Partially Supervised Cross-Domain Deep Learning Model for Urban Resident Recognition
Wang, Jingyuan (Beihang University) | He, Xu (Beihang University) | Wang, Ze (Beihang University) | Wu, Junjie (Beihang University) | Yuan, Nicholas Jing (Microsoft Corporation) | Xie, Xing (Microsoft Research) | Xiong, Zhang (Research Institute of Beihang University in Shenzhen)
Driven by the wave of urbanization in recent decades, the research topic about migrant behavior analysis draws great attention from both academia and the government. Nevertheless, subject to the cost of data collection and the lack of modeling methods, most of existing studies use only questionnaire surveys with sparse samples and non-individual level statistical data to achieve coarse-grained studies of migrant behaviors. In this paper, a partially supervised cross-domain deep learning model named CD-CNN is proposed for migrant/native recognition using mobile phone signaling data as behavioral features and questionnaire survey data as incomplete labels. Specifically, CD-CNN features in decomposing the mobile data into location domain and communication domain, and adopts a joint learning framework that combines two convolutional neural networks with a feature balancing scheme. Moreover, CD-CNN employs a three-step algorithm for training, in which the co-training step is of great value to partially supervised cross-domain learning. Comparative experiments on the city Wuxi demonstrate the high predictive power of CD-CNN. Two interesting applications further highlight the ability of CD-CNN for in-depth migrant behavioral analysis.
Coupling Implicit and Explicit Knowledge for Customer Volume Prediction
Wang, Jingyuan (Beihang University) | Lin, Yating (Beihang University) | Wu, Junjie (Beihang University) | Wang, Zhong (Beihang University) | Xiong, Zhang (Beihang University)
Customer volume prediction, which predicts the volume from a customer source to a service place, is a very important technique for location selection, market investigation, and other related applications. Most of traditional methods only make use of partial information for either supervised or unsupervised modeling, which cannot well integrate overall available knowledge. In this paper, we propose a method titled GR-NMF for jointly modeling both implicit correlations hidden inside customer volumes and explicit geographical knowledge via an integrated probabilistic framework. The effectiveness of GR-NMF in coupling all-round knowledge is verified over a real-life outpatient dataset under different scenarios. GR-NMF shows particularly evident advantages to all baselines in location selection with the cold-start challenge.