Wang, Jingyuan
Rethinking the Evaluation for Conversational Recommendation in the Era of Large Language Models
Wang, Xiaolei, Tang, Xinyu, Zhao, Wayne Xin, Wang, Jingyuan, Wen, Ji-Rong
The recent success of large language models (LLMs) has shown great potential to develop more powerful conversational recommender systems (CRSs), which rely on natural language conversations to satisfy user needs. In this paper, we embark on an investigation into the utilization of ChatGPT for conversational recommendation, revealing the inadequacy of the existing evaluation protocol. It might over-emphasize the matching with the ground-truth items or utterances generated by human annotators, while neglecting the interactive nature of being a capable CRS. To overcome the limitation, we further propose an interactive Evaluation approach based on LLMs named iEvaLM that harnesses LLM-based user simulators. Our evaluation approach can simulate various interaction scenarios between users and systems. Through the experiments on two publicly available CRS datasets, we demonstrate notable improvements compared to the prevailing evaluation protocol. Furthermore, we emphasize the evaluation of explainability, and ChatGPT showcases persuasive explanation generation for its recommendations. Our study contributes to a deeper comprehension of the untapped potential of LLMs for CRSs and provides a more flexible and easy-to-use evaluation framework for future research endeavors. The codes and data are publicly available at https://github.com/RUCAIBox/iEvaLM-CRS.
Multi-Factor Spatio-Temporal Prediction based on Graph Decomposition Learning
Ji, Jiahao, Wang, Jingyuan, Mou, Yu, Long, Cheng
Spatio-temporal (ST) prediction is an important and widely used technique in data mining and analytics, especially for ST data in urban systems such as transportation data. In practice, the ST data generation is usually influenced by various latent factors tied to natural phenomena or human socioeconomic activities, impacting specific spatial areas selectively. However, existing ST prediction methods usually do not refine the impacts of different factors, but directly model the entangled impacts of multiple factors. This amplifies the modeling complexity of ST data and compromises model interpretability. To this end, we propose a multi-factor ST prediction task that predicts partial ST data evolution under different factors, and combines them for a final prediction. We make two contributions to this task: an effective theoretical solution and a portable instantiation framework. Specifically, we first propose a theoretical solution called decomposed prediction strategy and prove its effectiveness from the perspective of information entropy theory. On top of that, we instantiate a novel model-agnostic framework, named spatio-temporal graph decomposition learning (STGDL), for multi-factor ST prediction. The framework consists of two main components: an automatic graph decomposition module that decomposes the original graph structure inherent in ST data into subgraphs corresponding to different factors, and a decomposed learning network that learns the partial ST data on each subgraph separately and integrates them for the final prediction. We conduct extensive experiments on four real-world ST datasets of two types of graphs, i.e., grid graph and network graph. Results show that our framework significantly reduces prediction errors of various ST models by 9.41% on average (35.36% at most). Furthermore, a case study reveals the interpretability potential of our framework.
Unified Data Management and Comprehensive Performance Evaluation for Urban Spatial-Temporal Prediction [Experiment, Analysis & Benchmark]
Jiang, Jiawei, Han, Chengkai, Zhao, Wayne Xin, Wang, Jingyuan
The field of urban spatial-temporal prediction is advancing rapidly with the development of deep learning techniques and the availability of large-scale datasets. However, challenges persist in accessing and utilizing diverse urban spatial-temporal datasets from different sources and stored in different formats, as well as determining effective model structures and components with the proliferation of deep learning models. This work addresses these challenges and provides three significant contributions. Firstly, we introduce "atomic files", a unified storage format designed for urban spatial-temporal big data, and validate its effectiveness on 40 diverse datasets, simplifying data management. Secondly, we present a comprehensive overview of technological advances in urban spatial-temporal prediction models, guiding the development of robust models. Thirdly, we conduct extensive experiments using diverse models and datasets, establishing a performance leaderboard and identifying promising research directions. Overall, this work effectively manages urban spatial-temporal data, guides future efforts, and facilitates the development of accurate and efficient urban spatial-temporal prediction models. It can potentially make long-term contributions to urban spatial-temporal data management and prediction, ultimately leading to improved urban living standards.
LibCity: A Unified Library Towards Efficient and Comprehensive Urban Spatial-Temporal Prediction
Jiang, Jiawei, Han, Chengkai, Jiang, Wenjun, Zhao, Wayne Xin, Wang, Jingyuan
As deep learning technology advances and more urban spatial-temporal data accumulates, an increasing number of deep learning models are being proposed to solve urban spatial-temporal prediction problems. However, there are limitations in the existing field, including open-source data being in various formats and difficult to use, few papers making their code and data openly available, and open-source models often using different frameworks and platforms, making comparisons challenging. A standardized framework is urgently needed to implement and evaluate these methods. To address these issues, we propose LibCity, an open-source library that offers researchers a credible experimental tool and a convenient development framework. In this library, we have reproduced 65 spatial-temporal prediction models and collected 55 spatial-temporal datasets, allowing researchers to conduct comprehensive experiments conveniently. By enabling fair model comparisons, designing a unified data storage format, and simplifying the process of developing new models, LibCity is poised to make significant contributions to the spatial-temporal prediction field.
Statistical Tests for Replacing Human Decision Makers with Algorithms
Feng, Kai, Hong, Han, Tang, Ke, Wang, Jingyuan
This paper proposes a statistical framework with which artificial intelligence can improve human decision making. The performance of each human decision maker is first benchmarked against machine predictions; we then replace the decisions made by a subset of the decision makers with the recommendation from the proposed artificial intelligence algorithm. Using a large nationwide dataset of pregnancy outcomes and doctor diagnoses from prepregnancy checkups of reproductive age couples, we experimented with both a heuristic frequentist approach and a Bayesian posterior loss function approach with an application to abnormal birth detection. We find that our algorithm on a test dataset results in a higher overall true positive rate and a lower false positive rate than the diagnoses made by doctors only. We also find that the diagnoses of doctors from rural areas are more frequently replaceable, suggesting that artificial intelligence assisted decision making tends to improve precision more in less developed regions.
The Web Can Be Your Oyster for Improving Large Language Models
Li, Junyi, Tang, Tianyi, Zhao, Wayne Xin, Wang, Jingyuan, Nie, Jian-Yun, Wen, Ji-Rong
Large language models (LLMs) encode a large amount of world knowledge. However, as such knowledge is frozen at the time of model training, the models become static and limited by the training data at that time. In order to further improve the capacity of LLMs for knowledge-intensive tasks, we consider augmenting LLMs with the large-scale web using search engine. Unlike previous augmentation sources (e.g., Wikipedia data dump), the web provides broader, more comprehensive and constantly updated information. In this paper, we present a web-augmented LLM UNIWEB, which is trained over 16 knowledge-intensive tasks in a unified text-to-text format. Instead of simply using the retrieved contents from web, our approach has made two major improvements. Firstly, we propose an adaptive search engine assisted learning method that can self-evaluate the confidence level of LLM's predictions, and adaptively determine when to refer to the web for more data, which can avoid useless or noisy augmentation from web. Secondly, we design a pretraining task, i.e., continual knowledge learning, based on salient spans prediction, to reduce the discrepancy between the encoded and retrieved knowledge. Experiments on a wide range of knowledge-intensive tasks show that our model significantly outperforms previous retrieval-augmented methods.
Interpretability is a Kind of Safety: An Interpreter-based Ensemble for Adversary Defense
Wang, Jingyuan, Wu, Yufan, Li, Mingxuan, Lin, Xin, Wu, Junjie, Li, Chao
While having achieved great success in rich real-life applications, deep neural network (DNN) models have long been criticized for their vulnerability to adversarial attacks. Tremendous research efforts have been dedicated to mitigating the threats of adversarial attacks, but the essential trait of adversarial examples is not yet clear, and most existing methods are yet vulnerable to hybrid attacks and suffer from counterattacks. In light of this, in this paper, we first reveal a gradient-based correlation between sensitivity analysis-based DNN interpreters and the generation process of adversarial examples, which indicates the Achilles's heel of adversarial attacks and sheds light on linking together the two long-standing challenges of DNN: fragility and unexplainability. We then propose an interpreter-based ensemble framework called X-Ensemble for robust adversary defense. X-Ensemble adopts a novel detection-rectification process and features in building multiple sub-detectors and a rectifier upon various types of interpretation information toward target classifiers. Moreover, X-Ensemble employs the Random Forests (RF) model to combine sub-detectors into an ensemble detector for adversarial hybrid attacks defense. The non-differentiable property of RF further makes it a precious choice against the counterattack of adversaries. Extensive experiments under various types of state-of-the-art attacks and diverse attack scenarios demonstrate the advantages of X-Ensemble to competitive baseline methods.
PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for Traffic Flow Prediction
Jiang, Jiawei, Han, Chengkai, Zhao, Wayne Xin, Wang, Jingyuan
As a core technology of Intelligent Transportation System, traffic flow prediction has a wide range of applications. The fundamental challenge in traffic flow prediction is to effectively model the complex spatial-temporal dependencies in traffic data. Spatial-temporal Graph Neural Network (GNN) models have emerged as one of the most promising methods to solve this problem. However, GNN-based models have three major limitations for traffic prediction: i) Most methods model spatial dependencies in a static manner, which limits the ability to learn dynamic urban traffic patterns; ii) Most methods only consider short-range spatial information and are unable to capture long-range spatial dependencies; iii) These methods ignore the fact that the propagation of traffic conditions between locations has a time delay in traffic systems. To this end, we propose a novel Propagation Delay-aware dynamic long-range transFormer, namely PDFormer, for accurate traffic flow prediction. Specifically, we design a spatial self-attention module to capture the dynamic spatial dependencies. Then, two graph masking matrices are introduced to highlight spatial dependencies from short- and long-range views. Moreover, a traffic delay-aware feature transformation module is proposed to empower PDFormer with the capability of explicitly modeling the time delay of spatial information propagation. Extensive experimental results on six real-world public traffic datasets show that our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency. Moreover, we visualize the learned spatial-temporal attention map to make our model highly interpretable.
BUAA_BIGSCity: Spatial-Temporal Graph Neural Network for Wind Power Forecasting in Baidu KDD CUP 2022
Jiang, Jiawei, Han, Chengkai, Wang, Jingyuan
In this technical report, we present our solution for the Baidu KDD Cup 2022 Spatial Dynamic Wind Power Forecasting Challenge. Wind power is a rapidly growing source of clean energy. Accurate wind power forecasting is essential for grid stability and the security of supply. Therefore, organizers provide a wind power dataset containing historical data from 134 wind turbines and launch the Baidu KDD Cup 2022 to examine the limitations of current methods for wind power forecasting. The average of RMSE (Root Mean Square Error) and MAE (Mean Absolute Error) is used as the evaluation score. We adopt two spatial-temporal graph neural network models, i.e., AGCRN and MTGNN, as our basic models. We train AGCRN by 5-fold cross-validation and additionally train MTGNN directly on the training and validation sets. Finally, we ensemble the two models based on the loss values of the validation set as our final submission. Using our method, our team \team achieves -45.36026 on the test set. We release our codes on Github (https://github.com/BUAABIGSCity/KDDCUP2022) for reproduction.
Self-supervised Trajectory Representation Learning with Temporal Regularities and Travel Semantics
Jiang, Jiawei, Pan, Dayan, Ren, Houxing, Jiang, Xiaohan, Li, Chao, Wang, Jingyuan
Trajectory Representation Learning (TRL) is a powerful tool for spatial-temporal data analysis and management. TRL aims to convert complicated raw trajectories into low-dimensional representation vectors, which can be applied to various downstream tasks, such as trajectory classification, clustering, and similarity computation. Existing TRL works usually treat trajectories as ordinary sequence data, while some important spatial-temporal characteristics, such as temporal regularities and travel semantics, are not fully exploited. To fill this gap, we propose a novel Self-supervised trajectory representation learning framework with TemporAl Regularities and Travel semantics, namely START. The proposed method consists of two stages. The first stage is a Trajectory Pattern-Enhanced Graph Attention Network (TPE-GAT), which converts the road network features and travel semantics into representation vectors of road segments. The second stage is a Time-Aware Trajectory Encoder (TAT-Enc), which encodes representation vectors of road segments in the same trajectory as a trajectory representation vector, meanwhile incorporating temporal regularities with the trajectory representation. Moreover, we also design two self-supervised tasks, i.e., span-masked trajectory recovery and trajectory contrastive learning, to introduce spatial-temporal characteristics of trajectories into the training process of our START framework. The effectiveness of the proposed method is verified by extensive experiments on two large-scale real-world datasets for three downstream tasks. The experiments also demonstrate that our method can be transferred across different cities to adapt heterogeneous trajectory datasets.