Plotting

 Wang, Jingyi


Towards Large Reasoning Models: A Survey of Reinforced Reasoning with Large Language Models

arXiv.org Artificial Intelligence

Language has long been conceived as an essential tool for human reasoning. The breakthrough of Large Language Models (LLMs) has sparked significant research interest in leveraging these models to tackle complex reasoning tasks. Researchers have moved beyond simple autoregressive token generation by introducing the concept of "thought" -- a sequence of tokens representing intermediate steps in the reasoning process. This innovative paradigm enables LLMs' to mimic complex human reasoning processes, such as tree search and reflective thinking. Recently, an emerging trend of learning to reason has applied reinforcement learning (RL) to train LLMs to master reasoning processes. This approach enables the automatic generation of high-quality reasoning trajectories through trial-and-error search algorithms, significantly expanding LLMs' reasoning capacity by providing substantially more training data. Furthermore, recent studies demonstrate that encouraging LLMs to "think" with more tokens during test-time inference can further significantly boost reasoning accuracy. Therefore, the train-time and test-time scaling combined to show a new research frontier -- a path toward Large Reasoning Model. The introduction of OpenAI's o1 series marks a significant milestone in this research direction. In this survey, we present a comprehensive review of recent progress in LLM reasoning. We begin by introducing the foundational background of LLMs and then explore the key technical components driving the development of large reasoning models, with a focus on automated data construction, learning-to-reason techniques, and test-time scaling. We also analyze popular open-source projects at building large reasoning models, and conclude with open challenges and future research directions.


On the convergence of noisy Bayesian Optimization with Expected Improvement

arXiv.org Machine Learning

Expected improvement (EI) is one of the most widely-used acquisition functions in Bayesian optimization (BO). Despite its proven success in applications for decades, important open questions remain on the theoretical convergence behaviors and rates for EI. In this paper, we contribute to the convergence theories of EI in three novel and critical area. First, we consider objective functions that are under the Gaussian process (GP) prior assumption, whereas existing works mostly focus on functions in the reproducing kernel Hilbert space (RKHS). Second, we establish the first asymptotic error bound and its corresponding rate for GP-EI with noisy observations under the GP prior assumption. Third, by investigating the exploration and exploitation of the non-convex EI function, we prove improved error bounds for both the noise-free and noisy cases. The improved noiseless bound is extended to the RKHS assumption as well.


Group Shapley with Robust Significance Testing and Its Application to Bond Recovery Rate Prediction

arXiv.org Machine Learning

We propose Group Shapley, a metric that extends the classical individual-level Shapley value framework to evaluate the importance of feature groups, addressing the structured nature of predictors commonly found in business and economic data. More importantly, we develop a significance testing procedure based on a three-cumulant chi-square approximation and establish the asymptotic properties of the test statistics for Group Shapley values. Our approach can effectively handle challenging scenarios, including sparse or skewed distributions and small sample sizes, outperforming alternative tests such as the Wald test. Simulations confirm that the proposed test maintains robust empirical size and demonstrates enhanced power under diverse conditions. To illustrate the method's practical relevance in advancing Explainable AI, we apply our framework to bond recovery rate predictions using a global dataset (1996-2023) comprising 2,094 observations and 98 features, grouped into 16 subgroups and five broader categories: bond characteristics, firm fundamentals, industry-specific factors, market-related variables, and macroeconomic indicators. Our results identify the market-related variables group as the most influential. Furthermore, Lorenz curves and Gini indices reveal that Group Shapley assigns feature importance more equitably compared to individual Shapley values.


On Improved Regret Bounds In Bayesian Optimization with Gaussian Noise

arXiv.org Machine Learning

Bayesian optimization (BO) with Gaussian process (GP) surrogate models is a powerful black-box optimization method. Acquisition functions are a critical part of a BO algorithm as they determine how the new samples are selected. Some of the most widely used acquisition functions include upper confidence bound (UCB) and Thompson sampling (TS). The convergence analysis of BO algorithms has focused on the cumulative regret under both the Bayesian and frequentist settings for the objective. In this paper, we establish new pointwise bounds on the prediction error of GP under the frequentist setting with Gaussian noise. Consequently, we prove improved convergence rates of cumulative regret bound for both GP-UCB and GP-TS. Of note, the new prediction error bound under Gaussian noise can be applied to general BO algorithms and convergence analysis, e.g., the asymptotic convergence of expected improvement (EI) with noise.


RedTest: Towards Measuring Redundancy in Deep Neural Networks Effectively

arXiv.org Artificial Intelligence

Deep learning has revolutionized computing in many real-world applications, arguably due to its remarkable performance and extreme convenience as an end-to-end solution. However, deep learning models can be costly to train and to use, especially for those large-scale models, making it necessary to optimize the original overly complicated models into smaller ones in scenarios with limited resources such as mobile applications or simply for resource saving. The key question in such model optimization is, how can we effectively identify and measure the redundancy in a deep learning model structure. While several common metrics exist in the popular model optimization techniques to measure the performance of models after optimization, they are not able to quantitatively inform the degree of remaining redundancy. To address the problem, we present a novel testing approach, i.e., RedTest, which proposes a novel testing metric called Model Structural Redundancy Score (MSRS) to quantitatively measure the degree of redundancy in a deep learning model structure. We first show that MSRS is effective in both revealing and assessing the redundancy issues in many state-of-the-art models, which urgently calls for model optimization. Then, we utilize MSRS to assist deep learning model developers in two practical application scenarios: 1) in Neural Architecture Search, we design a novel redundancy-aware algorithm to guide the search for the optimal model structure and demonstrate its effectiveness by comparing it to existing standard NAS practice; 2) in the pruning of large-scale pre-trained models, we prune the redundant layers of pre-trained models with the guidance of layer similarity to derive less redundant ones of much smaller size. Extensive experimental results demonstrate that removing such redundancy has a negligible effect on the model utility.


Protecting Deep Learning Model Copyrights with Adversarial Example-Free Reuse Detection

arXiv.org Artificial Intelligence

Model reuse techniques can reduce the resource requirements for training high-performance deep neural networks (DNNs) by leveraging existing models. However, unauthorized reuse and replication of DNNs can lead to copyright infringement and economic loss to the model owner. This underscores the need to analyze the reuse relation between DNNs and develop copyright protection techniques to safeguard intellectual property rights. Existing white-box testing-based approaches cannot address the common heterogeneous reuse case where the model architecture is changed, and DNN fingerprinting approaches heavily rely on generating adversarial examples with good transferability, which is known to be challenging in the black-box setting. To bridge the gap, we propose NFARD, a Neuron Functionality Analysis-based Reuse Detector, which only requires normal test samples to detect reuse relations by measuring the models' differences on a newly proposed model characterization, i.e., neuron functionality (NF). A set of NF-based distance metrics is designed to make NFARD applicable to both white-box and black-box settings. Moreover, we devise a linear transformation method to handle heterogeneous reuse cases by constructing the optimal projection matrix for dimension consistency, significantly extending the application scope of NFARD. To the best of our knowledge, this is the first adversarial example-free method that exploits neuron functionality for DNN copyright protection. As a side contribution, we constructed a reuse detection benchmark named Reuse Zoo that covers various practical reuse techniques and popular datasets. Extensive evaluations on this comprehensive benchmark show that NFARD achieves F1 scores of 0.984 and 1.0 for detecting reuse relationships in black-box and white-box settings, respectively, while generating test suites 2 ~ 99 times faster than previous methods.


Towards Real World Debiasing: A Fine-grained Analysis On Spurious Correlation

arXiv.org Artificial Intelligence

Spurious correlations in training data significantly hinder the generalization capability of machine learning models when faced with distribution shifts in real-world scenarios. To tackle the problem, numerous debias approaches have been proposed and benchmarked on datasets intentionally designed with severe biases. However, it remains to be asked: \textit{1. Do existing benchmarks really capture biases in the real world? 2. Can existing debias methods handle biases in the real world?} To answer the questions, we revisit biased distributions in existing benchmarks and real-world datasets, and propose a fine-grained framework for analyzing dataset bias by disentangling it into the magnitude and prevalence of bias. We observe and theoretically demonstrate that existing benchmarks poorly represent real-world biases. We further introduce two novel biased distributions to bridge this gap, forming a nuanced evaluation framework for real-world debiasing. Building upon these results, we evaluate existing debias methods with our evaluation framework. Results show that existing methods are incapable of handling real-world biases. Through in-depth analysis, we propose a simple yet effective approach that can be easily applied to existing debias methods, named Debias in Destruction (DiD). Empirical results demonstrate the superiority of DiD, improving the performance of existing methods on all types of biases within the proposed evaluation framework.


S-Eval: Automatic and Adaptive Test Generation for Benchmarking Safety Evaluation of Large Language Models

arXiv.org Artificial Intelligence

Large Language Models have gained considerable attention for their revolutionary capabilities. However, there is also growing concern on their safety implications, making a comprehensive safety evaluation for LLMs urgently needed before model deployment. In this work, we propose S-Eval, a new comprehensive, multi-dimensional and open-ended safety evaluation benchmark. At the core of S-Eval is a novel LLM-based automatic test prompt generation and selection framework, which trains an expert testing LLM Mt combined with a range of test selection strategies to automatically construct a high-quality test suite for the safety evaluation. The key to the automation of this process is a novel expert safety-critique LLM Mc able to quantify the riskiness score of an LLM's response, and additionally produce risk tags and explanations. Besides, the generation process is also guided by a carefully designed risk taxonomy with four different levels, covering comprehensive and multi-dimensional safety risks of concern. Based on these, we systematically construct a new and large-scale safety evaluation benchmark for LLMs consisting of 220,000 evaluation prompts, including 20,000 base risk prompts (10,000 in Chinese and 10,000 in English) and 200,000 corresponding attack prompts derived from 10 popular adversarial instruction attacks against LLMs. Moreover, considering the rapid evolution of LLMs and accompanied safety threats, S-Eval can be flexibly configured and adapted to include new risks, attacks and models. S-Eval is extensively evaluated on 20 popular and representative LLMs. The results confirm that S-Eval can better reflect and inform the safety risks of LLMs compared to existing benchmarks. We also explore the impacts of parameter scales, language environments, and decoding parameters on the evaluation, providing a systematic methodology for evaluating the safety of LLMs.


Tackling Noisy Labels with Network Parameter Additive Decomposition

arXiv.org Artificial Intelligence

Given data with noisy labels, over-parameterized deep networks suffer overfitting mislabeled data, resulting in poor generalization. The memorization effect of deep networks shows that although the networks have the ability to memorize all noisy data, they would first memorize clean training data, and then gradually memorize mislabeled training data. A simple and effective method that exploits the memorization effect to combat noisy labels is early stopping. However, early stopping cannot distinguish the memorization of clean data and mislabeled data, resulting in the network still inevitably overfitting mislabeled data in the early training stage.In this paper, to decouple the memorization of clean data and mislabeled data, and further reduce the side effect of mislabeled data, we perform additive decomposition on network parameters. Namely, all parameters are additively decomposed into two groups, i.e., parameters $\mathbf{w}$ are decomposed as $\mathbf{w}=\bm{\sigma}+\bm{\gamma}$. Afterward, the parameters $\bm{\sigma}$ are considered to memorize clean data, while the parameters $\bm{\gamma}$ are considered to memorize mislabeled data. Benefiting from the memorization effect, the updates of the parameters $\bm{\sigma}$ are encouraged to fully memorize clean data in early training, and then discouraged with the increase of training epochs to reduce interference of mislabeled data. The updates of the parameters $\bm{\gamma}$ are the opposite. In testing, only the parameters $\bm{\sigma}$ are employed to enhance generalization. Extensive experiments on both simulated and real-world benchmarks confirm the superior performance of our method.


Improving Detection in Aerial Images by Capturing Inter-Object Relationships

arXiv.org Artificial Intelligence

In many image domains, the spatial distribution of objects in a scene exhibits meaningful patterns governed by their semantic relationships. In most modern detection pipelines, however, the detection proposals are processed independently, overlooking the underlying relationships between objects. In this work, we introduce a transformer-based approach to capture these inter-object relationships to refine classification and regression outcomes for detected objects. Building on two-stage detectors, we tokenize the region of interest (RoI) proposals to be processed by a transformer encoder. Specific spatial and geometric relations are incorporated into the attention weights and adaptively modulated and regularized. Experimental results demonstrate that the proposed method achieves consistent performance improvement on three benchmarks including DOTA-v1.0, DOTA-v1.5, and HRSC 2016, especially ranking first on both DOTA-v1.5 and HRSC 2016. Specifically, our new method has an increase of 1.59 mAP on DOTA-v1.0, 4.88 mAP on DOTA-v1.5, and 2.1 mAP on HRSC 2016, respectively, compared to the baselines.