Wang, Jingbo
Systematic Testing of the Data-Poisoning Robustness of KNN
Li, Yannan, Wang, Jingbo, Wang, Chao
Data poisoning aims to compromise a machine learning based software component by contaminating its training set to change its prediction results for test inputs. Existing methods for deciding data-poisoning robustness have either poor accuracy or long running time and, more importantly, they can only certify some of the truly-robust cases, but remain inconclusive when certification fails. In other words, they cannot falsify the truly-non-robust cases. To overcome this limitation, we propose a systematic testing based method, which can falsify as well as certify data-poisoning robustness for a widely used supervised-learning technique named k-nearest neighbors (KNN). Our method is faster and more accurate than the baseline enumeration method, due to a novel over-approximate analysis in the abstract domain, to quickly narrow down the search space, and systematic testing in the concrete domain, to find the actual violations. We have evaluated our method on a set of supervised-learning datasets. Our results show that the method significantly outperforms state-of-the-art techniques, and can decide data-poisoning robustness of KNN prediction results for most of the test inputs.
Controllable Motion Diffusion Model
Shi, Yi, Wang, Jingbo, Jiang, Xuekun, Dai, Bo
Generating realistic and controllable motions for virtual characters is a challenging task in computer animation, and its implications extend to games, simulations, and virtual reality. Recent studies have drawn inspiration from the success of diffusion models in image generation, demonstrating the potential for addressing this task. However, the majority of these studies have been limited to offline applications that target at sequence-level generation that generates all steps simultaneously. To enable real-time motion synthesis with diffusion models in response to time-varying control signals, we propose the framework of the Controllable Motion Diffusion Model (COMODO). Our framework begins with an auto-regressive motion diffusion model (A-MDM), which generates motion sequences step by step. In this way, simply using the standard DDPM algorithm without any additional complexity, our framework is able to generate high-fidelity motion sequences over extended periods with different types of control signals. Then, we propose our reinforcement learning-based controller and controlling strategies on top of the A-MDM model, so that our framework can steer the motion synthesis process across multiple tasks, including target reaching, joystick-based control, goal-oriented control, and trajectory following. The proposed framework enables the real-time generation of diverse motions that react adaptively to user commands on-the-fly, thereby enhancing the overall user experience. Besides, it is compatible with the inpainting-based editing methods and can predict much more diverse motions without additional fine-tuning of the basic motion generation models. We conduct comprehensive experiments to evaluate the effectiveness of our framework in performing various tasks and compare its performance against state-of-the-art methods.
NeuroDiff: Scalable Differential Verification of Neural Networks using Fine-Grained Approximation
Paulsen, Brandon, Wang, Jingbo, Wang, Jiawei, Wang, Chao
As neural networks make their way into safety-critical systems, where misbehavior can lead to catastrophes, there is a growing interest in certifying the equivalence of two structurally similar neural networks. For example, compression techniques are often used in practice for deploying trained neural networks on computationally- and energy-constrained devices, which raises the question of how faithfully the compressed network mimics the original network. Unfortunately, existing methods either focus on verifying a single network or rely on loose approximations to prove the equivalence of two networks. Due to overly conservative approximation, differential verification lacks scalability in terms of both accuracy and computational cost. To overcome these problems, we propose NeuroDiff, a symbolic and fine-grained approximation technique that drastically increases the accuracy of differential verification while achieving many orders-of-magnitude speedup. NeuroDiff has two key contributions. The first one is new convex approximations that more accurately bound the difference neurons of two networks under all possible inputs. The second one is judicious use of symbolic variables to represent neurons whose difference bounds have accumulated significant error. We also find that these two techniques are complementary, i.e., when combined, the benefit is greater than the sum of their individual benefits. We have evaluated NeuroDiff on a variety of differential verification tasks. Our results show that NeuroDiff is up to 1000X faster and 5X more accurate than the state-of-the-art tool.
DNN: A Two-Scale Distributional Tale of Heterogeneous Treatment Effect Inference
Fan, Yingying, Lv, Jinchi, Wang, Jingbo
Heterogeneous treatment effects are the center of gravity in many modern causal inference applications. In this paper, we investigate the estimation and inference of heterogeneous treatment effects with precision in a general nonparametric setting. To this end, we enhance the classical $k$-nearest neighbor method with a simple algorithm, extend it to a distributional setting, and suggest the two-scale distributional nearest neighbors (DNN) estimator with reduced finite-sample bias. Our recipe is first to subsample the data and average the 1-nearest neighbor estimators from each subsample. With appropriately chosen subsampling scale, the resulting DNN estimator is proved to be asymptotically unbiased and normal under mild regularity conditions. We then proceed with combining DNN estimators with different subsampling scales to further reduce bias. Our theoretical results on the advantages of the new two-scale DNN framework are well supported by several Monte Carlo simulations. The newly suggested method is also applied to a real-life data set to study the heterogeneity of treatment effects of smoking on children's birth weights across mothers' ages.