Wang, Jing
LANE: Logic Alignment of Non-tuning Large Language Models and Online Recommendation Systems for Explainable Reason Generation
Zhao, Hongke, Zheng, Songming, Wu, Likang, Yu, Bowen, Wang, Jing
The explainability of recommendation systems is crucial for enhancing user trust and satisfaction. Leveraging large language models (LLMs) offers new opportunities for comprehensive recommendation logic generation. However, in existing related studies, fine-tuning LLM models for recommendation tasks incurs high computational costs and alignment issues with existing systems, limiting the application potential of proven proprietary/closed-source LLM models, such as GPT-4. In this work, our proposed effective strategy LANE aligns LLMs with online recommendation systems without additional LLMs tuning, reducing costs and improving explainability. This innovative approach addresses key challenges in integrating language models with recommendation systems while fully utilizing the capabilities of powerful proprietary models. Specifically, our strategy operates through several key components: semantic embedding, user multi-preference extraction using zero-shot prompting, semantic alignment, and explainable recommendation generation using Chain of Thought (CoT) prompting. By embedding item titles instead of IDs and utilizing multi-head attention mechanisms, our approach aligns the semantic features of user preferences with those of candidate items, ensuring coherent and user-aligned recommendations. Sufficient experimental results including performance comparison, questionnaire voting, and visualization cases prove that our method can not only ensure recommendation performance, but also provide easy-to-understand and reasonable recommendation logic.
Predicting Many Properties of Crystals by a Single Deep Learning Model
Xu, Haosheng, Qian, Dongheng, Wang, Jing
The use of machine learning methods for predicting the properties of crystalline materials encounters significant challenges, primarily related to input encoding, output versatility, and interpretability. Here, we introduce CrystalBERT, an adaptable transformer-based framework with novel structure that integrates space group, elemental, and unit cell information. The method's adaptability lies not only in its ability to seamlessly combine diverse features but also in its capability to accurately predict a wide range of physically important properties, including topological properties, superconducting transition temperatures, dielectric constants, and more. CrystalBERT also provides insightful physical interpretations regarding the features that most significantly influence the target properties. Our findings indicate that space group and elemental information are more important for predicting topological and superconducting properties, in contrast to some properties that primarily depend on the unit cell information. This underscores the intricate nature of topological and superconducting properties. By incorporating all these features, we achieve a high accuracy of 91% in topological classification, surpassing prior studies and identifying previously misclassified topological materials, further demonstrating the effectiveness of our model.
Inaccurate Label Distribution Learning with Dependency Noise
Kou, Zhiqiang, Wang, Jing, Jia, Yuheng, Geng, Xin
In this paper, we introduce the Dependent Noise-based Inaccurate Label Distribution Learning (DN-ILDL) framework to tackle the challenges posed by noise in label distribution learning, which arise from dependencies on instances and labels. We start by modeling the inaccurate label distribution matrix as a combination of the true label distribution and a noise matrix influenced by specific instances and labels. To address this, we develop a linear mapping from instances to their true label distributions, incorporating label correlations, and decompose the noise matrix using feature and label representations, applying group sparsity constraints to accurately capture the noise. Furthermore, we employ graph regularization to align the topological structures of the input and output spaces, ensuring accurate reconstruction of the true label distribution matrix. Utilizing the Alternating Direction Method of Multipliers (ADMM) for efficient optimization, we validate our method's capability to recover true labels accurately and establish a generalization error bound. Extensive experiments demonstrate that DN-ILDL effectively addresses the ILDL problem and outperforms existing LDL methods.
Adjacent Leader Decentralized Stochastic Gradient Descent
He, Haoze, Wang, Jing, Choromanska, Anna
This work focuses on the decentralized deep learning optimization framework. We propose Adjacent Leader Decentralized Gradient Descent (AL-DSGD), for improving final model performance, accelerating convergence, and reducing the communication overhead of decentralized deep learning optimizers. AL-DSGD relies on two main ideas. Firstly, to increase the influence of the strongest learners on the learning system it assigns weights to different neighbor workers according to both their performance and the degree when averaging among them, and it applies a corrective force on the workers dictated by both the currently best-performing neighbor and the neighbor with the maximal degree. Secondly, to alleviate the problem of the deterioration of the convergence speed and performance of the nodes with lower degrees, AL-DSGD relies on dynamic communication graphs, which effectively allows the workers to communicate with more nodes while keeping the degrees of the nodes low. Experiments demonstrate that AL-DSGD accelerates the convergence of the decentralized state-of-the-art techniques and improves their test performance especially in the communication constrained environments. We also theoretically prove the convergence of the proposed scheme. Finally, we release to the community a highly general and concise PyTorch-based library for distributed training of deep learning models that supports easy implementation of any distributed deep learning approach ((a)synchronous, (de)centralized).
GaitMotion: A Multitask Dataset for Pathological Gait Forecasting
Zhang, Wenwen, Zhang, Hao, Jiang, Zenan, Wang, Jing, Servati, Amir, Servati, Peyman
Gait benchmark empowers uncounted encouraging research fields such as gait recognition, humanoid locomotion, etc. Despite the growing focus on gait analysis, the research community is hindered by the limitations of the currently available databases, which mostly consist of videos or images with limited labeling. In this paper, we introduce GaitMotion, a multitask dataset leveraging wearable sensors to capture the patients' real-time movement with pathological gait. This dataset offers extensive ground-truth labeling for multiple tasks, including step/stride segmentation and step/stride length prediction, empowers researchers with a more holistic understanding of gait disturbances linked to neurological impairments. The wearable gait analysis suit captures the gait cycle, pattern, and parameters for both normal and pathological subjects. This data may prove beneficial for healthcare products focused on patient progress monitoring and post-disease recovery, as well as for forensics technologies aimed at person reidentification, and biomechanics research to aid in the development of humanoid robotics. Moreover, the analysis has considered the drift in data distribution across individual subjects. This drift can be attributed to each participant's unique behavioral habits or potential displacement of the sensor. Stride length variance for normal, Parkinson's, and stroke patients are compared to recognize the pathological walking pattern. As the baseline and benchmark, we provide an error of 14.1, 13.3, and 12.2 centimeters of stride length prediction for normal, Parkinson's, and Stroke gaits separately. We also analyzed the gait characteristics for normal and pathological gaits in terms of the gait cycle and gait parameters.
Towards Coarse-to-Fine Evaluation of Inference Efficiency for Large Language Models
Chen, Yushuo, Tang, Tianyi, Xiang, Erge, Li, Linjiang, Zhao, Wayne Xin, Wang, Jing, Chai, Yunpeng, Wen, Ji-Rong
In real world, large language models (LLMs) can serve as the assistant to help users accomplish their jobs, and also support the development of advanced applications. For the wide application of LLMs, the inference efficiency is an essential concern, which has been widely studied in existing work, and numerous optimization algorithms and code libraries have been proposed to improve it. Nonetheless, users still find it challenging to compare the effectiveness of all the above methods and understand the underlying mechanisms. In this work, we perform a detailed coarse-to-fine analysis of the inference performance of various code libraries. To evaluate the overall effectiveness, we examine four usage scenarios within two practical applications. We further provide both theoretical and empirical fine-grained analyses of each module in the Transformer architecture. Our experiments yield comprehensive results that are invaluable for researchers to evaluate code libraries and improve inference strategies.
Bit Rate Matching Algorithm Optimization in JPEG-AI Verification Model
Jia, Panqi, Koyuncu, A. Burakhan, Mao, Jue, Cui, Ze, Ma, Yi, Guo, Tiansheng, Solovyev, Timofey, Karabutov, Alexander, Zhao, Yin, Wang, Jing, Alshina, Elena, Kaup, Andre
The research on neural network (NN) based image compression has shown superior performance compared to classical compression frameworks. Unlike the hand-engineered transforms in the classical frameworks, NN-based models learn the non-linear transforms providing more compact bit representations, and achieve faster coding speed on parallel devices over their classical counterparts. Those properties evoked the attention of both scientific and industrial communities, resulting in the standardization activity JPEG-AI. The verification model for the standardization process of JPEG-AI is already in development and has surpassed the advanced VVC intra codec. To generate reconstructed images with the desired bits per pixel and assess the BD-rate performance of both the JPEG-AI verification model and VVC intra, bit rate matching is employed. However, the current state of the JPEG-AI verification model experiences significant slowdowns during bit rate matching, resulting in suboptimal performance due to an unsuitable model. The proposed methodology offers a gradual algorithmic optimization for matching bit rates, resulting in a fourfold acceleration and over 1% improvement in BD-rate at the base operation point. At the high operation point, the acceleration increases up to sixfold.
ClickSAM: Fine-tuning Segment Anything Model using click prompts for ultrasound image segmentation
Guo, Aimee, Fei, Gace, Pasupuletic, Hemanth, Wang, Jing
The newly released Segment Anything Model (SAM) is a popular tool used in image processing due to its superior segmentation accuracy, variety of input prompts, training capabilities, and efficient model design. However, its current model is trained on a diverse dataset not tailored to medical images, particularly ultrasound images. Ultrasound images tend to have a lot of noise, making it difficult to segment out important structures. In this project, we developed ClickSAM, which fine-tunes the Segment Anything Model using click prompts for ultrasound images. ClickSAM has two stages of training: the first stage is trained on single-click prompts centered in the ground-truth contours, and the second stage focuses on improving the model performance through additional positive and negative click prompts. By comparing the first stage's predictions to the ground-truth masks, true positive, false positive, and false negative segments are calculated. Positive clicks are generated using the true positive and false negative segments, and negative clicks are generated using the false positive segments. The Centroidal Voronoi Tessellation algorithm is then employed to collect positive and negative click prompts in each segment that are used to enhance the model performance during the second stage of training. With click-train methods, ClickSAM exhibits superior performance compared to other existing models for ultrasound image segmentation.
Multiscale Modelling with Physics-informed Neural Network: from Large-scale Dynamics to Small-scale Predictions in Complex Systems
Wang, Jing, Li, Zheng, Lai, Pengyu, Wang, Rui, Yang, Di, Yang, Dewu, Xu, Hui
Multiscale phenomena manifest across various scientific domains, presenting a ubiquitous challenge in accurately and effectively predicting multiscale dynamics in complex systems. In this paper, a novel decoupling solving mode is proposed through modelling large-scale dynamics independently and treating small-scale dynamics as a slaved system. A Spectral Physics-informed Neural Network (PINN) is developed to characterize the small-scale system in an efficient and accurate way. The effectiveness of the method is demonstrated through extensive numerical experiments, including one-dimensional Kuramot-Sivashinsky equation, two- and three-dimensional Navier-Stokes equations, showcasing its versatility in addressing problems of fluid dynamics. Furthermore, we also delve into the application of the proposed approach to more complex problems, including non-uniform meshes, complex geometries, large-scale data with noise, and high-dimensional small-scale dynamics. The discussions about these scenarios contribute to a comprehensive understanding of the method's capabilities and limitations. This paper presents a valuable and promising approach to enhance the computational simulations of multiscale spatiotemporal systems, which enables the acquisition of large-scale data with minimal computational demands, followed by Spectral PINN to capture small-scale dynamics with improved efficiency and accuracy.
Data Distribution Dynamics in Real-World WiFi-Based Patient Activity Monitoring for Home Healthcare
Monjur, Mahathir, Liu, Jia, Xu, Jingye, Zhang, Yuntong, Wang, Xiaomeng, Li, Chengdong, Park, Hyejin, Wang, Wei, Shieh, Karl, Munir, Sirajum, Wang, Jing, Song, Lixin, Nirjon, Shahriar
This paper examines the application of WiFi signals for real-world monitoring of daily activities in home healthcare scenarios. While the state-of-the-art of WiFi-based activity recognition is promising in lab environments, challenges arise in real-world settings due to environmental, subject, and system configuration variables, affecting accuracy and adaptability. The research involved deploying systems in various settings and analyzing data shifts. It aims to guide realistic development of robust, context-aware WiFi sensing systems for elderly care. The findings suggest a shift in WiFi-based activity sensing, bridging the gap between academic research and practical applications, enhancing life quality through technology.