Plotting

 Wang, Jing


Show, Reward and Tell: Automatic Generation of Narrative Paragraph From Photo Stream by Adversarial Training

AAAI Conferences

Impressive image captioning results (i.e., an objective description for an image) are achieved with plenty of training pairs. In this paper, we take one step further to investigate the creation of narrative paragraph for a photo stream. This task is even more challenging due to the difficulty in modeling an ordered photo sequence and in generating a relevant paragraph with expressive language style for storytelling. The difficulty can even be exacerbated by the limited training data, so that existing approaches almost focus on search-based solutions. To deal with these challenges, we propose a sequence-to-sequence modeling approach with reinforcement learning and adversarial training. First, to model the ordered photo stream, we propose a hierarchical recurrent neural network as story generator, which is optimized by reinforcement learning with rewards. Second, to generate relevant and story-style paragraphs, we design the rewards with two critic networks, including a multi-modal and a language-style discriminator. Third, we further consider the story generator and reward critics as adversaries. The generator aims to create indistinguishable paragraphs to human-level stories, whereas the critics aim at distinguishing them and further improving the generator by policy gradient. Experiments on three widely-used datasets show the effectiveness, against state-of-the-art methods with relative increase of 20.2% by METEOR. We also show the subjective preference for the proposed approach over the baselines through a user study with 30 human subjects.


Constructing multi-modality and multi-classifier radiomics predictive models through reliable classifier fusion

arXiv.org Machine Learning

Radiomics aims to extract and analyze large numbers of quantitative features from medical images and is highly promising in staging, diagnosing, and predicting outcomes of cancer treatments. Nevertheless, several challenges need to be addressed to construct an optimal radiomics predictive model. First, the predictive performance of the model may be reduced when features extracted from an individual imaging modality are blindly combined into a single predictive model. Second, because many different types of classifiers are available to construct a predictive model, selecting an optimal classifier for a particular application is still challenging. In this work, we developed multi-modality and multi-classifier radiomics predictive models that address the aforementioned issues in currently available models. Specifically, a new reliable classifier fusion strategy was proposed to optimally combine output from different modalities and classifiers. In this strategy, modality-specific classifiers were first trained, and an analytic evidential reasoning (ER) rule was developed to fuse the output score from each modality to construct an optimal predictive model. One public data set and two clinical case studies were performed to validate model performance. The experimental results indicated that the proposed ER rule based radiomics models outperformed the traditional models that rely on a single classifier or simply use combined features from different modalities.


Community Preserving Network Embedding

AAAI Conferences

Network embedding, aiming to learn the low-dimensional representations of nodes in networks, is of paramount importance in many real applications. One basic requirement of network embedding is to preserve the structure and inherent properties of the networks. While previous network embedding methods primarily preserve the microscopic structure, such as the first- and second-order proximities of nodes, the mesoscopic community structure, which is one of the most prominent feature of networks, is largely ignored. In this paper, we propose a novel Modularized Nonnegative Matrix Factorization (M-NMF) model to incorporate the community structure into network embedding. We exploit the consensus relationship between the representations of nodes and community structure, and then jointly optimize NMF based representation learning model and modularity based community detection model in a unified framework, which enables the learned representations of nodes to preserve both of the microscopic and community structures. We also provide efficient updating rules to infer the parameters of our model, together with the correctness and convergence guarantees. Extensive experimental results on a variety of real-world networks show the superior performance of the proposed method over the state-of-the-arts.


Social Trust Prediction via Max-norm Constrained 1-bit Matrix Completion

arXiv.org Machine Learning

Social trust prediction addresses the significant problem of exploring interactions among users in social networks. Naturally, this problem can be formulated in the matrix completion framework, with each entry indicating the trustness or distrustness. However, there are two challenges for the social trust problem: 1) the observed data are with sign (1-bit) measurements; 2) they are typically sampled non-uniformly. Most of the previous matrix completion methods do not well handle the two issues. Motivated by the recent progress of max-norm, we propose to solve the problem with a 1-bit max-norm constrained formulation. Since max-norm is not easy to optimize, we utilize a reformulation of max-norm which facilitates an efficient projected gradient decent algorithm. We demonstrate the superiority of our formulation on two benchmark datasets.


Network Anomaly Detection: A Survey and Comparative Analysis of Stochastic and Deterministic Methods

arXiv.org Machine Learning

We present five methods to the problem of network anomaly detection. These methods cover most of the common techniques in the anomaly detection field, including Statistical Hypothesis Tests (SHT), Support Vector Machines (SVM) and clustering analysis. We evaluate all methods in a simulated network that consists of nominal data, three flow-level anomalies and one packet-level attack. Through analyzing the results, we point out the advantages and disadvantages of each method and conclude that combining the results of the individual methods can yield improved anomaly detection results.


Scalable $k$-NN graph construction

arXiv.org Machine Learning

The $k$-NN graph has played a central role in increasingly popular data-driven techniques for various learning and vision tasks; yet, finding an efficient and effective way to construct $k$-NN graphs remains a challenge, especially for large-scale high-dimensional data. In this paper, we propose a new approach to construct approximate $k$-NN graphs with emphasis in: efficiency and accuracy. We hierarchically and randomly divide the data points into subsets and build an exact neighborhood graph over each subset, achieving a base approximate neighborhood graph; we then repeat this process for several times to generate multiple neighborhood graphs, which are combined to yield a more accurate approximate neighborhood graph. Furthermore, we propose a neighborhood propagation scheme to further enhance the accuracy. We show both theoretical and empirical accuracy and efficiency of our approach to $k$-NN graph construction and demonstrate significant speed-up in dealing with large scale visual data.


GTPA: A Generative Model For Online Mentor-Apprentice Networks

AAAI Conferences

There is a large body of work on the evolution of graphs in various domains, which shows that many real graphs evolve in a similar manner. In this paper we study a novel type of network formed by mentor-apprentice relationships in a massively multiplayer online role playing game. We observe that some of the static and dynamic laws which have been observed in many other real world networks are not observed in this network. Consequently well known graph generators like Preferential Attachment, Forest Fire, Butterfly, RTM, etc., cannot be applied to such mentoring networks. We propose a novel generative model to generate networks with the characteristics of mentoring networks.


MLLE: Modified Locally Linear Embedding Using Multiple Weights

Neural Information Processing Systems

The locally linear embedding (LLE) is improved by introducing multiple linearly independent local weight vectors for each neighborhood. We characterize the reconstruction weights and show the existence of the linearly independent weight vectors at each neighborhood. The modified locally linear embedding (MLLE) proposed in this paper is much stable. It can retrieve the ideal embedding if MLLE is applied on data points sampled from an isometric manifold. MLLE is also compared with the local tangent space alignment (LTSA). Numerical examples are given that show the improvement and efficiency of MLLE.


Adaptive Manifold Learning

Neural Information Processing Systems

Recently, there have been several advances in the machine learning and pattern recognition communities for developing manifold learning algorithms toconstruct nonlinear low-dimensional manifolds from sample data points embedded in high-dimensional spaces. In this paper, we develop algorithmsthat address two key issues in manifold learning: 1) the adaptive selection of the neighborhood sizes; and 2) better fitting the local geometric structure to account for the variations in the curvature of the manifold and its interplay with the sampling density of the data set. We also illustrate the effectiveness of our methods on some synthetic data sets.