Plotting

 Wang, Jindong


FreeMatch: Self-adaptive Thresholding for Semi-supervised Learning

arXiv.org Artificial Intelligence

Semi-supervised Learning (SSL) has witnessed great success owing to the impressive performances brought by various methods based on pseudo labeling and consistency regularization. However, we argue that existing methods might fail to utilize the unlabeled data more effectively since they either use a pre-defined / fixed threshold or an ad-hoc threshold adjusting scheme, resulting in inferior performance and slow convergence. We first analyze a motivating example to obtain intuitions on the relationship between the desirable threshold and model's learning status. Based on the analysis, we hence propose FreeMatch to adjust the confidence threshold in a self-adaptive manner according to the model's learning status. We further introduce a self-adaptive class fairness regularization penalty to encourage the model for diverse predictions during the early training stage. Extensive experiments indicate the superiority of FreeMatch especially when the labeled data are extremely rare. FreeMatch achieves 5.78%, 13.59%, and 1.28% error rate reduction over the latest state-of-the-art method FlexMatch on CIFAR-10 with 1 label per class, STL-10 with 4 labels per class, and ImageNet with 100 labels per class, respectively. Moreover, FreeMatch can also boost the performance of imbalanced SSL. The codes can be found at https://github.com/microsoft/Semi-supervised-learning.


Domain-invariant Feature Exploration for Domain Generalization

arXiv.org Artificial Intelligence

Deep learning has achieved great success in the past few years. However, the performance of deep learning is likely to impede in face of non-IID situations. Domain generalization (DG) enables a model to generalize to an unseen test distribution, i.e., to learn domain-invariant representations. In this paper, we argue that domain-invariant features should be originating from both internal and mutual sides. Internal invariance means that the features can be learned with a single domain and the features capture intrinsic semantics of data, i.e., the property within a domain, which is agnostic to other domains. Mutual invariance means that the features can be learned with multiple domains (cross-domain) and the features contain common information, i.e., the transferable features w.r.t. other domains. We then propose DIFEX for Domain-Invariant Feature EXploration. DIFEX employs a knowledge distillation framework to capture the high-level Fourier phase as the internally-invariant features and learn cross-domain correlation alignment as the mutually-invariant features. We further design an exploration loss to increase the feature diversity for better generalization. Extensive experiments on both time-series and visual benchmarks demonstrate that the proposed DIFEX achieves state-of-the-art performance.


An Embarrassingly Simple Baseline for Imbalanced Semi-Supervised Learning

arXiv.org Artificial Intelligence

Semi-supervised learning (SSL) has shown great promise in leveraging unlabeled data to improve model performance. While standard SSL assumes uniform data distribution, we consider a more realistic and challenging setting called imbalanced SSL, where imbalanced class distributions occur in both labeled and unlabeled data. Although there are existing endeavors to tackle this challenge, their performance degenerates when facing severe imbalance since they can not reduce the class imbalance sufficiently and effectively. In this paper, we study a simple yet overlooked baseline -- SimiS -- which tackles data imbalance by simply supplementing labeled data with pseudo-labels, according to the difference in class distribution from the most frequent class. Such a simple baseline turns out to be highly effective in reducing class imbalance. It outperforms existing methods by a significant margin, e.g., 12.8%, 13.6%, and 16.7% over previous SOTA on CIFAR100-LT, FOOD101-LT, and ImageNet127 respectively. The reduced imbalance results in faster convergence and better pseudo-label accuracy of SimiS. The simplicity of our method also makes it possible to be combined with other re-balancing techniques to improve the performance further. Moreover, our method shows great robustness to a wide range of data distributions, which holds enormous potential in practice. Code will be publicly available.


Domain Generalization for Activity Recognition via Adaptive Feature Fusion

arXiv.org Artificial Intelligence

Human activity recognition requires the efforts to build a generalizable model using the training datasets with the hope to achieve good performance in test datasets. However, in real applications, the training and testing datasets may have totally different distributions due to various reasons such as different body shapes, acting styles, and habits, damaging the model's generalization performance. While such a distribution gap can be reduced by existing domain adaptation approaches, they typically assume that the test data can be accessed in the training stage, which is not realistic. In this paper, we consider a more practical and challenging scenario: domain-generalized activity recognition (DGAR) where the test dataset \emph{cannot} be accessed during training. To this end, we propose \emph{Adaptive Feature Fusion for Activity Recognition~(AFFAR)}, a domain generalization approach that learns to fuse the domain-invariant and domain-specific representations to improve the model's generalization performance. AFFAR takes the best of both worlds where domain-invariant representations enhance the transferability across domains and domain-specific representations leverage the model discrimination power from each domain. Extensive experiments on three public HAR datasets show its effectiveness. Furthermore, we apply AFFAR to a real application, i.e., the diagnosis of Children's Attention Deficit Hyperactivity Disorder~(ADHD), which also demonstrates the superiority of our approach.


Multi-Representation Adaptation Network for Cross-domain Image Classification

arXiv.org Artificial Intelligence

In image classification, it is often expensive and time-consuming to acquire sufficient labels. To solve this problem, domain adaptation often provides an attractive option given a large amount of labeled data from a similar nature but different domain. Existing approaches mainly align the distributions of representations extracted by a single structure and the representations may only contain partial information, e.g., only contain part of the saturation, brightness, and hue information. Along this line, we propose Multi-Representation Adaptation which can dramatically improve the classification accuracy for cross-domain image classification and specially aims to align the distributions of multiple representations extracted by a hybrid structure named Inception Adaptation Module (IAM). Based on this, we present Multi-Representation Adaptation Network (MRAN) to accomplish the cross-domain image classification task via multi-representation alignment which can capture the information from different aspects. In addition, we extend Maximum Mean Discrepancy (MMD) to compute the adaptation loss. Our approach can be easily implemented by extending most feed-forward models with IAM, and the network can be trained efficiently via back-propagation. Experiments conducted on three benchmark image datasets demonstrate the effectiveness of MRAN. The code has been available at https://github.com/easezyc/deep-transfer-learning.


Adaptive Memory Networks with Self-supervised Learning for Unsupervised Anomaly Detection

arXiv.org Artificial Intelligence

Unsupervised anomaly detection aims to build models to effectively detect unseen anomalies by only training on the normal data. Although previous reconstruction-based methods have made fruitful progress, their generalization ability is limited due to two critical challenges. First, the training dataset only contains normal patterns, which limits the model generalization ability. Second, the feature representations learned by existing models often lack representativeness which hampers the ability to preserve the diversity of normal patterns. In this paper, we propose a novel approach called Adaptive Memory Network with Self-supervised Learning (AMSL) to address these challenges and enhance the generalization ability in unsupervised anomaly detection. Based on the convolutional autoencoder structure, AMSL incorporates a self-supervised learning module to learn general normal patterns and an adaptive memory fusion module to learn rich feature representations. Experiments on four public multivariate time series datasets demonstrate that AMSL significantly improves the performance compared to other state-of-the-art methods. Specifically, on the largest CAP sleep stage detection dataset with 900 million samples, AMSL outperforms the second-best baseline by \textbf{4}\%+ in both accuracy and F1 score. Apart from the enhanced generalization ability, AMSL is also more robust against input noise.


Margin Calibration for Long-Tailed Visual Recognition

arXiv.org Artificial Intelligence

The long-tailed class distribution in visual recognition tasks poses great challenges for neural networks on how to handle the biased predictions between head and tail classes, i.e., the model tends to classify tail classes as head classes. While existing research focused on data resampling and loss function engineering, in this paper, we take a different perspective: the classification margins. We study the relationship between the margins and logits (classification scores) and empirically observe the biased margins and the biased logits are positively correlated. We propose MARC, a simple yet effective MARgin Calibration function to dynamically calibrate the biased margins for unbiased logits. We validate MARC through extensive experiments on common long-tailed benchmarks including CIFAR-LT, ImageNet-LT, Places-LT, and iNaturalist-LT. Experimental results demonstrate that our MARC achieves favorable results on these benchmarks. In addition, MARC is extremely easy to implement with just three lines of code. We hope this simple method will motivate people to rethink the biased margins and biased logits in long-tailed visual recognition.


AdaRNN: Adaptive Learning and Forecasting of Time Series

arXiv.org Artificial Intelligence

Time series has wide applications in the real world and is known to be difficult to forecast. Since its statistical properties change over time, its distribution also changes temporally, which will cause severe distribution shift problem to existing methods. However, it remains unexplored to model the time series in the distribution perspective. In this paper, we term this as Temporal Covariate Shift (TCS). This paper proposes Adaptive RNNs (AdaRNN) to tackle the TCS problem by building an adaptive model that generalizes well on the unseen test data. AdaRNN is sequentially composed of two novel algorithms. First, we propose Temporal Distribution Characterization to better characterize the distribution information in the TS. Second, we propose Temporal Distribution Matching to reduce the distribution mismatch in TS to learn the adaptive TS model. AdaRNN is a general framework with flexible distribution distances integrated. Experiments on human activity recognition, air quality prediction, and financial analysis show that AdaRNN outperforms the latest methods by a classification accuracy of 2.6% and significantly reduces the RMSE by 9.0%. We also show that the temporal distribution matching algorithm can be extended in Transformer structure to boost its performance.


Unsupervised Deep Anomaly Detection for Multi-Sensor Time-Series Signals

arXiv.org Artificial Intelligence

Nowadays, multi-sensor technologies are applied in many fields, e.g., Health Care (HC), Human Activity Recognition (HAR), and Industrial Control System (ICS). These sensors can generate a substantial amount of multivariate time-series data. Unsupervised anomaly detection on multi-sensor time-series data has been proven critical in machine learning researches. The key challenge is to discover generalized normal patterns by capturing spatial-temporal correlation in multi-sensor data. Beyond this challenge, the noisy data is often intertwined with the training data, which is likely to mislead the model by making it hard to distinguish between the normal, abnormal, and noisy data. Few of previous researches can jointly address these two challenges. In this paper, we propose a novel deep learning-based anomaly detection algorithm called Deep Convolutional Autoencoding Memory network (CAE-M). We first build a Deep Convolutional Autoencoder to characterize spatial dependence of multi-sensor data with a Maximum Mean Discrepancy (MMD) to better distinguish between the noisy, normal, and abnormal data. Then, we construct a Memory Network consisting of linear (Autoregressive Model) and non-linear predictions (Bidirectional LSTM with Attention) to capture temporal dependence from time-series data. Finally, CAE-M jointly optimizes these two subnetworks. We empirically compare the proposed approach with several state-of-the-art anomaly detection methods on HAR and HC datasets. Experimental results demonstrate that our proposed model outperforms these existing methods.


Deep Subdomain Adaptation Network for Image Classification

arXiv.org Artificial Intelligence

For a target task where labeled data is unavailable, domain adaptation can transfer a learner from a different source domain. Previous deep domain adaptation methods mainly learn a global domain shift, i.e., align the global source and target distributions without considering the relationships between two subdomains within the same category of different domains, leading to unsatisfying transfer learning performance without capturing the fine-grained information. Recently, more and more researchers pay attention to Subdomain Adaptation which focuses on accurately aligning the distributions of the relevant subdomains. However, most of them are adversarial methods which contain several loss functions and converge slowly. Based on this, we present Deep Subdomain Adaptation Network (DSAN) which learns a transfer network by aligning the relevant subdomain distributions of domain-specific layer activations across different domains based on a local maximum mean discrepancy (LMMD). Our DSAN is very simple but effective which does not need adversarial training and converges fast. The adaptation can be achieved easily with most feed-forward network models by extending them with LMMD loss, which can be trained efficiently via back-propagation. Experiments demonstrate that DSAN can achieve remarkable results on both object recognition tasks and digit classification tasks. Our code will be available at: https://github.com/easezyc/deep-transfer-learning