Not enough data to create a plot.
Try a different view from the menu above.
Wang, Jindong
Position Paper: What Can Large Language Models Tell Us about Time Series Analysis
Jin, Ming, Zhang, Yifan, Chen, Wei, Zhang, Kexin, Liang, Yuxuan, Yang, Bin, Wang, Jindong, Pan, Shirui, Wen, Qingsong
Time series analysis is essential for comprehending the complexities inherent in various real-world systems and applications. Although large language models (LLMs) have recently made significant strides, the development of artificial general intelligence (AGI) equipped with time series analysis capabilities remains in its nascent phase. Most existing time series models heavily rely on domain knowledge and extensive model tuning, predominantly focusing on prediction tasks. In this paper, we argue that current LLMs have the potential to revolutionize time series analysis, thereby promoting efficient decision-making and advancing towards a more universal form of time series analytical intelligence. Such advancement could unlock a wide range of possibilities, including modality switching and time series question answering. We encourage researchers and practitioners to recognize the potential of LLMs in advancing time series analysis and emphasize the need for trust in these related efforts. Furthermore, we detail the seamless integration of time series analysis with existing LLM technologies and outline promising avenues for future research.
On Catastrophic Inheritance of Large Foundation Models
Chen, Hao, Raj, Bhiksha, Xie, Xing, Wang, Jindong
Large foundation models (LFMs) are claiming incredible performances. Yet great concerns have been raised about their mythic and uninterpreted potentials not only in machine learning, but also in various other disciplines. In this position paper, we propose to identify a neglected issue deeply rooted in LFMs: Catastrophic Inheritance, describing the weaknesses and limitations inherited from biased large-scale pre-training data to behaviors of LFMs on the downstream tasks, including samples that are corrupted, long-tailed, noisy, out-of-distributed, to name a few. Such inheritance can potentially cause catastrophes to downstream applications, such as bias, lack of generalization, deteriorated performance, security vulnerability, privacy leakage, and value misalignment. We discuss the challenges behind this issue and propose UIM, a framework to Understand the catastrophic inheritance of LFMs from both pre-training and downstream adaptation, Interpret the implications of catastrophic inheritance on downstream tasks, and how to Mitigate it. UIM aims to unite both the machine learning and social sciences communities for more responsible and promising AI development and deployment.
A General Framework for Learning from Weak Supervision
Chen, Hao, Wang, Jindong, Feng, Lei, Li, Xiang, Wang, Yidong, Xie, Xing, Sugiyama, Masashi, Singh, Rita, Raj, Bhiksha
Weakly supervised learning generally faces challenges in applicability to various scenarios with diverse weak supervision and in scalability due to the complexity of existing algorithms, thereby hindering the practical deployment. This paper introduces a general framework for learning from weak supervision (GLWS) with a novel algorithm. Central to GLWS is an Expectation-Maximization (EM) formulation, adeptly accommodating various weak supervision sources, including instance partial labels, aggregate statistics, pairwise observations, and unlabeled data. We further present an advanced algorithm that significantly simplifies the EM computational demands using a Non-deterministic Finite Automaton (NFA) along with a forward-backward algorithm, which effectively reduces time complexity from quadratic or factorial often required in existing solutions to linear scale. The problem of learning from arbitrary weak supervision is therefore converted to the NFA modeling of them. GLWS not only enhances the scalability of machine learning models but also demonstrates superior performance and versatility across 11 weak supervision scenarios. We hope our work paves the way for further advancements and practical deployment in this field.
Large Language Model Evaluation via Matrix Entropy
Wei, Lai, Tan, Zhiquan, Li, Chenghai, Wang, Jindong, Huang, Weiran
Large language models (LLMs) have revolutionized the field of natural language processing, extending their strong capabilities into multi-modal domains. Thus, it is vital to define proper and diversified metrics for the evaluation of LLMs. In this paper, we introduce matrix entropy, a novel metric rooted in information theory and geometry principles to quantify the data compression proficiency in LLMs. It reflects the model's ability to extract relevant information and eliminate unnecessary elements, thereby providing insight into the language model's intrinsic capability. Specifically, we demonstrate its applicability in both single-modal (language) and multi-modal settings. For language models, our findings reveal that the matrix entropy of representations follows a scaling law type reduction when the model scales up, serving as a complement to the traditional loss scaling law. For the multi-modal setting, we also propose an evaluation method based on matrix entropy for assessing alignment quality and we find that modern large multi-modal models exhibit great alignment performance.
TrustLLM: Trustworthiness in Large Language Models
Sun, Lichao, Huang, Yue, Wang, Haoran, Wu, Siyuan, Zhang, Qihui, Gao, Chujie, Huang, Yixin, Lyu, Wenhan, Zhang, Yixuan, Li, Xiner, Liu, Zhengliang, Liu, Yixin, Wang, Yijue, Zhang, Zhikun, Kailkhura, Bhavya, Xiong, Caiming, Xiao, Chaowei, Li, Chunyuan, Xing, Eric, Huang, Furong, Liu, Hao, Ji, Heng, Wang, Hongyi, Zhang, Huan, Yao, Huaxiu, Kellis, Manolis, Zitnik, Marinka, Jiang, Meng, Bansal, Mohit, Zou, James, Pei, Jian, Liu, Jian, Gao, Jianfeng, Han, Jiawei, Zhao, Jieyu, Tang, Jiliang, Wang, Jindong, Mitchell, John, Shu, Kai, Xu, Kaidi, Chang, Kai-Wei, He, Lifang, Huang, Lifu, Backes, Michael, Gong, Neil Zhenqiang, Yu, Philip S., Chen, Pin-Yu, Gu, Quanquan, Xu, Ran, Ying, Rex, Ji, Shuiwang, Jana, Suman, Chen, Tianlong, Liu, Tianming, Zhou, Tianyi, Wang, William, Li, Xiang, Zhang, Xiangliang, Wang, Xiao, Xie, Xing, Chen, Xun, Wang, Xuyu, Liu, Yan, Ye, Yanfang, Cao, Yinzhi, Chen, Yong, Zhao, Yue
Large language models (LLMs), exemplified by ChatGPT, have gained considerable attention for their excellent natural language processing capabilities. Nonetheless, these LLMs present many challenges, particularly in the realm of trustworthiness. Therefore, ensuring the trustworthiness of LLMs emerges as an important topic. This paper introduces TrustLLM, a comprehensive study of trustworthiness in LLMs, including principles for different dimensions of trustworthiness, established benchmark, evaluation, and analysis of trustworthiness for mainstream LLMs, and discussion of open challenges and future directions. Specifically, we first propose a set of principles for trustworthy LLMs that span eight different dimensions. Based on these principles, we further establish a benchmark across six dimensions including truthfulness, safety, fairness, robustness, privacy, and machine ethics. We then present a study evaluating 16 mainstream LLMs in TrustLLM, consisting of over 30 datasets. Our findings firstly show that in general trustworthiness and utility (i.e., functional effectiveness) are positively related. Secondly, our observations reveal that proprietary LLMs generally outperform most open-source counterparts in terms of trustworthiness, raising concerns about the potential risks of widely accessible open-source LLMs. However, a few open-source LLMs come very close to proprietary ones. Thirdly, it is important to note that some LLMs may be overly calibrated towards exhibiting trustworthiness, to the extent that they compromise their utility by mistakenly treating benign prompts as harmful and consequently not responding. Finally, we emphasize the importance of ensuring transparency not only in the models themselves but also in the technologies that underpin trustworthiness. Knowing the specific trustworthy technologies that have been employed is crucial for analyzing their effectiveness.
PromptBench: A Unified Library for Evaluation of Large Language Models
Zhu, Kaijie, Zhao, Qinlin, Chen, Hao, Wang, Jindong, Xie, Xing
The evaluation of large language models (LLMs) is crucial to assess their performance and mitigate potential security risks. In this paper, we introduce PromptBench, a unified library to evaluate LLMs. It consists of several key components that can be easily used and extended by researchers: prompt construction, prompt engineering, dataset and model loading, adversarial prompt attack, dynamic evaluation protocols, and analysis tools. PromptBench is designed as an open, general, and flexible codebase for research purpose. It aims to facilitate original study in creating new benchmarks, deploying downstream applications, and designing new evaluation protocols.
Towards Optimization and Model Selection for Domain Generalization: A Mixup-guided Solution
Lu, Wang, Wang, Jindong, Wang, Yidong, Xie, Xing
The distribution shifts between training and test data typically undermine the performance of models. In recent years, lots of work pays attention to domain generalization (DG) where distribution shifts exist, and target data are unseen. Despite the progress in algorithm design, two foundational factors have long been ignored: 1) the optimization for regularization-based objectives, and 2) the model selection for DG since no knowledge about the target domain can be utilized. In this paper, we propose Mixup guided optimization and selection techniques for DG. For optimization, we utilize an adapted Mixup to generate an out-of-distribution dataset that can guide the preference direction and optimize with Pareto optimization. For model selection, we generate a validation dataset with a closer distance to the target distribution, and thereby it can better represent the target data. We also present some theoretical insights behind our proposals. Comprehensive experiments demonstrate that our model optimization and selection techniques can largely improve the performance of existing domain generalization algorithms and even achieve new state-of-the-art results.
SpecFormer: Guarding Vision Transformer Robustness via Maximum Singular Value Penalization
Hu, Xixu, Zheng, Runkai, Wang, Jindong, Leung, Cheuk Hang, Wu, Qi, Xie, Xing
Vision Transformers (ViTs) have gained prominence as a preferred choice for a wide range of computer vision tasks due to their exceptional performance. However, their widespread adoption has raised concerns about security in the face of malicious attacks. Most existing methods rely on empirical adjustments during the training process, lacking a clear theoretical foundation. In this study, we address this gap by introducing SpecFormer, specifically designed to enhance ViTs' resilience against adversarial attacks, with support from carefully derived theoretical guarantees. We establish local Lipschitz bounds for the self-attention layer and introduce a novel approach, Maximum Singular Value Penalization (MSVP), to attain precise control over these bounds. We seamlessly integrate MSVP into ViTs' attention layers, using the power iteration method for enhanced computational efficiency. The modified model, SpecFormer, effectively reduces the spectral norms of attention weight matrices, thereby enhancing network local Lipschitzness. This, in turn, leads to improved training efficiency and robustness. Extensive experiments on CIFAR and ImageNet datasets confirm SpecFormer's superior performance in defending against adversarial attacks.
A Survey on Evaluation of Large Language Models
Chang, Yupeng, Wang, Xu, Wang, Jindong, Wu, Yuan, Yang, Linyi, Zhu, Kaijie, Chen, Hao, Yi, Xiaoyuan, Wang, Cunxiang, Wang, Yidong, Ye, Wei, Zhang, Yue, Chang, Yi, Yu, Philip S., Yang, Qiang, Xie, Xing
Large language models (LLMs) are gaining increasing popularity in both academia and industry, owing to their unprecedented performance in various applications. As LLMs continue to play a vital role in both research and daily use, their evaluation becomes increasingly critical, not only at the task level, but also at the society level for better understanding of their potential risks. Over the past years, significant efforts have been made to examine LLMs from various perspectives. This paper presents a comprehensive review of these evaluation methods for LLMs, focusing on three key dimensions: what to evaluate, where to evaluate, and how to evaluate. Firstly, we provide an overview from the perspective of evaluation tasks, encompassing general natural language processing tasks, reasoning, medical usage, ethics, educations, natural and social sciences, agent applications, and other areas. Secondly, we answer the `where' and `how' questions by diving into the evaluation methods and benchmarks, which serve as crucial components in assessing performance of LLMs. Then, we summarize the success and failure cases of LLMs in different tasks. Finally, we shed light on several future challenges that lie ahead in LLMs evaluation. Our aim is to offer invaluable insights to researchers in the realm of LLMs evaluation, thereby aiding the development of more proficient LLMs. Our key point is that evaluation should be treated as an essential discipline to better assist the development of LLMs. We consistently maintain the related open-source materials at: https://github.com/MLGroupJLU/LLM-eval-survey.
Supervised Knowledge Makes Large Language Models Better In-context Learners
Yang, Linyi, Zhang, Shuibai, Yu, Zhuohao, Bao, Guangsheng, Wang, Yidong, Wang, Jindong, Xu, Ruochen, Ye, Wei, Xie, Xing, Chen, Weizhu, Zhang, Yue
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering. The recent progress in large-scale generative models has further expanded their use in real-world language applications. However, the critical challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored. While previous in-context learning research has focused on enhancing models to adhere to users' specific instructions and quality expectations, and to avoid undesired outputs, little to no work has explored the use of task-Specific finetuned Language Models (SLMs) to improve LLMs' in-context learning during the inference stage. Our primary contribution is the establishment of a simple yet effective framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks. Using our proposed plug-in method, enhanced versions of Llama 2 and ChatGPT surpass their original versions regarding generalizability and factuality. We offer a comprehensive suite of resources, including 16 curated datasets, prompts, model checkpoints, and LLM outputs across 9 distinct tasks. Our empirical analysis sheds light on the advantages of incorporating discriminative models into LLMs and highlights the potential of our methodology in fostering more reliable LLMs. Trained on extensive volumes of data with numerous parameters, large language models (LLMs) have garnered significant performance across diverse tasks. Their in-context learning (ICL) ability positions them as foundational models to adeptly address various downstream tasks, ranging from natural language understanding (Chowdhery et al., 2022; OpenAI, 2023a;b) to reasoning (Wei et al., 2022; O'Brien & Lewis, 2023), and planning (Shen et al., 2023). Despite their robust performance, LLMs come with their own set of challenges; they demand substantial resources for training and deployment, demonstrate slow inference times, and are susceptible to hallucination (Li et al., 2023a).