Goto

Collaborating Authors

 Wang, Jiawei


Tarsier: Recipes for Training and Evaluating Large Video Description Models

arXiv.org Artificial Intelligence

Generating fine-grained video descriptions is a fundamental challenge in video understanding. In this work, we introduce Tarsier, a family of large-scale video-language models designed to generate high-quality video descriptions. Tarsier employs CLIP-ViT to encode frames separately and then uses an LLM to model temporal relationships. Despite its simple architecture, we demonstrate that with a meticulously designed two-stage training procedure, the Tarsier models exhibit substantially stronger video description capabilities than any existing open-source model, showing a $+51.4\%$ advantage in human side-by-side evaluation over the strongest model. Additionally, they are comparable to state-of-the-art proprietary models, with a $+12.3\%$ advantage against GPT-4V and a $-6.7\%$ disadvantage against Gemini 1.5 Pro. Besides video description, Tarsier proves to be a versatile generalist model, achieving new state-of-the-art results across nine public benchmarks, including multi-choice VQA, open-ended VQA, and zero-shot video captioning. Our second contribution is the introduction of a new benchmark for evaluating video description models, consisting of a new challenging dataset featuring videos from diverse sources and varying complexity, along with an automatic method specifically designed to assess the quality of fine-grained video descriptions. We make our models and evaluation benchmark publicly available at \url{https://github.com/bytedance/tarsier}.


Large Language Models as Urban Residents: An LLM Agent Framework for Personal Mobility Generation

arXiv.org Artificial Intelligence

This paper introduces a novel approach using Large Language Models (LLMs) integrated into an agent framework for flexible and effective personal mobility generation. LLMs overcome the limitations of previous models by effectively processing semantic data and offering versatility in modeling various tasks. Our approach addresses three research questions: aligning LLMs with real-world urban mobility data, developing reliable activity generation strategies, and exploring LLM applications in urban mobility. The key technical contribution is a novel LLM agent framework that accounts for individual activity patterns and motivations, including a self-consistency approach to align LLMs with real-world activity data and a retrieval-augmented strategy for interpretable activity generation. We evaluate our LLM agent framework and compare it with state-of-the-art personal mobility generation approaches, demonstrating the effectiveness of our approach and its potential applications in urban mobility. Overall, this study marks the pioneering work of designing an LLM agent framework for activity generation based on real-world human activity data, offering a promising tool for urban mobility analysis.


AMCEN: An Attention Masking-based Contrastive Event Network for Two-stage Temporal Knowledge Graph Reasoning

arXiv.org Artificial Intelligence

Temporal knowledge graphs (TKGs) can effectively model the ever-evolving nature of real-world knowledge, and their completeness and enhancement can be achieved by reasoning new events from existing ones. However, reasoning accuracy is adversely impacted due to an imbalance between new and recurring events in the datasets. To achieve more accurate TKG reasoning, we propose an attention masking-based contrastive event network (AMCEN) with local-global temporal patterns for the two-stage prediction of future events. In the network, historical and non-historical attention mask vectors are designed to control the attention bias towards historical and non-historical entities, acting as the key to alleviating the imbalance. A local-global message-passing module is proposed to comprehensively consider and capture multi-hop structural dependencies and local-global temporal evolution for the in-depth exploration of latent impact factors of different event types. A contrastive event classifier is used to classify events more accurately by incorporating local-global temporal patterns into contrastive learning. Therefore, AMCEN refines the prediction scope with the results of the contrastive event classification, followed by utilizing attention masking-based decoders to finalize the specific outcomes. The results of our experiments on four benchmark datasets highlight the superiority of AMCEN. Especially, the considerable improvements in Hits@1 prove that AMCEN can make more precise predictions about future occurrences.


EM-TTS: Efficiently Trained Low-Resource Mongolian Lightweight Text-to-Speech

arXiv.org Artificial Intelligence

Recently, deep learning-based Text-to-Speech (TTS) systems have achieved high-quality speech synthesis results. Recurrent neural networks have become a standard modeling technique for sequential data in TTS systems and are widely used. However, training a TTS model which includes RNN components requires powerful GPU performance and takes a long time. In contrast, CNN-based sequence synthesis techniques can significantly reduce the parameters and training time of a TTS model while guaranteeing a certain performance due to their high parallelism, which alleviate these economic costs of training. In this paper, we propose a lightweight TTS system based on deep convolutional neural networks, which is a two-stage training end-to-end TTS model and does not employ any recurrent units. Our model consists of two stages: Text2Spectrum and SSRN. The former is used to encode phonemes into a coarse mel spectrogram and the latter is used to synthesize the complete spectrum from the coarse mel spectrogram. Meanwhile, we improve the robustness of our model by a series of data augmentations, such as noise suppression, time warping, frequency masking and time masking, for solving the low resource mongolian problem. Experiments show that our model can reduce the training time and parameters while ensuring the quality and naturalness of the synthesized speech compared to using mainstream TTS models. Our method uses NCMMSC2022-MTTSC Challenge dataset for validation, which significantly reduces training time while maintaining a certain accuracy.


Boximator: Generating Rich and Controllable Motions for Video Synthesis

arXiv.org Artificial Intelligence

Generating rich and controllable motion is a pivotal challenge in video synthesis. We propose Boximator, a new approach for fine-grained motion control. Boximator introduces two constraint types: hard box and soft box. Users select objects in the conditional frame using hard boxes and then use either type of boxes to roughly or rigorously define the object's position, shape, or motion path in future frames. Boximator functions as a plug-in for existing video diffusion models. Its training process preserves the base model's knowledge by freezing the original weights and training only the control module. To address training challenges, we introduce a novel self-tracking technique that greatly simplifies the learning of box-object correlations. Empirically, Boximator achieves state-of-the-art video quality (FVD) scores, improving on two base models, and further enhanced after incorporating box constraints. Its robust motion controllability is validated by drastic increases in the bounding box alignment metric. Human evaluation also shows that users favor Boximator generation results over the base model.


UniVIE: A Unified Label Space Approach to Visual Information Extraction from Form-like Documents

arXiv.org Artificial Intelligence

Existing methods for Visual Information Extraction (VIE) from form-like documents typically fragment the process into separate subtasks, such as key information extraction, key-value pair extraction, and choice group extraction. However, these approaches often overlook the hierarchical structure of form documents, including hierarchical key-value pairs and hierarchical choice groups. To address these limitations, we present a new perspective, reframing VIE as a relation prediction problem and unifying labels of different tasks into a single label space. This unified approach allows for the definition of various relation types and effectively tackles hierarchical relationships in form-like documents. In line with this perspective, we present UniVIE, a unified model that addresses the VIE problem comprehensively. UniVIE functions using a coarse-to-fine strategy. It initially generates tree proposals through a tree proposal network, which are subsequently refined into hierarchical trees by a relation decoder module. To enhance the relation prediction capabilities of UniVIE, we incorporate two novel tree constraints into the relation decoder: a tree attention mask and a tree level embedding. Extensive experimental evaluations on both our in-house dataset HierForms and a publicly available dataset SIBR, substantiate that our method achieves state-of-the-art results, underscoring the effectiveness and potential of our unified approach in advancing the field of VIE.


XuanCe: A Comprehensive and Unified Deep Reinforcement Learning Library

arXiv.org Artificial Intelligence

In this paper, we present XuanCe, a comprehensive and unified deep reinforcement learning (DRL) library designed to be compatible with PyTorch, TensorFlow, and MindSpore. XuanCe offers a wide range of functionalities, including over 40 classical DRL and multi-agent DRL algorithms, with the flexibility to easily incorporate new algorithms and environments. It is a versatile DRL library that supports CPU, GPU, and Ascend, and can be executed on various operating systems such as Ubuntu, Windows, MacOS, and EulerOS. Extensive benchmarks conducted on popular environments including MuJoCo, Atari, and StarCraftII multi-agent challenge demonstrate the library's impressive performance.


Multi-Task Multi-Agent Shared Layers are Universal Cognition of Multi-Agent Coordination

arXiv.org Artificial Intelligence

Multi-agent reinforcement learning shines as the pinnacle of multi-agent systems, conquering intricate real-world challenges, fostering collaboration and coordination among agents, and unleashing the potential for intelligent decision-making across domains. However, training a multi-agent reinforcement learning network is a formidable endeavor, demanding substantial computational resources to interact with diverse environmental variables, extract state representations, and acquire decision-making knowledge. The recent breakthroughs in large-scale pre-trained models ignite our curiosity: Can we uncover shared knowledge in multi-agent reinforcement learning and leverage pre-trained models to expedite training for future tasks? Addressing this issue, we present an innovative multi-task learning approach that aims to extract and harness common decision-making knowledge, like cooperation and competition, across different tasks. Our approach involves concurrent training of multiple multi-agent tasks, with each task employing independent front-end perception layers while sharing back-end decision-making layers. This effective decoupling of state representation extraction from decision-making allows for more efficient training and better transferability. To evaluate the efficacy of our proposed approach, we conduct comprehensive experiments in two distinct environments: the StarCraft Multi-agent Challenge (SMAC) and the Google Research Football (GRF) environments. The experimental results unequivocally demonstrate the smooth transferability of the shared decision-making network to other tasks, thereby significantly reducing training costs and improving final performance. Furthermore, visualizations authenticate the presence of general multi-agent decision-making knowledge within the shared network layers, further validating the effectiveness of our approach.


UAV Path Planning for Object Observation with Quality Constraints: A Dynamic Programming Approach

arXiv.org Artificial Intelligence

This paper addresses a UAV path planning task that seeks to observe a set of objects while satisfying the observation quality constraint. A dynamic programming algorithm is proposed that enables the UAV to observe the target objects with shortest path while subjecting to the observation quality constraint. The objects have their own facing direction and restricted observation range. With an observing order, the algorithm achieves (1+$\epsilon$)-approximation ratio in theory and runs in polynomial time. The extensive results show that the algorithm produces near-optimal solutions, the effectiveness of which is also tested and proved in the Airsim simulator, a realistic virtual environment.


Feasibility of Local Trajectory Planning for Level-2+ Semi-autonomous Driving without Absolute Localization

arXiv.org Artificial Intelligence

Autonomous driving has long grappled with the need for precise absolute localization, making full autonomy elusive and raising the capital entry barriers for startups. This study delves into the feasibility of local trajectory planning for level-2+ (L2+) semi-autonomous vehicles without the dependence on accurate absolute localization. Instead, we emphasize the estimation of the pose change between consecutive planning frames from motion sensors and integration of relative locations of traffic objects to the local planning problem under the ego car's local coordinate system, therefore eliminating the need for an absolute localization. Without the availability of absolute localization for correction, the measurement errors of speed and yaw rate greatly affect the estimation accuracy of the relative pose change between frames. We proved that the feasibility/stability of the continuous planning problem under such motion sensor errors can be guaranteed at certain defined conditions. This was achieved by formulating it as a Lyapunov-stability analysis problem. Moreover, a simulation pipeline was developed to further validate the proposed local planning method. Simulations were conducted at two traffic scenes with different error settings for speed and yaw rate measurements. The results substantiate the proposed framework's functionality even under relatively inferior sensor errors. We also experiment the stability limits of the planned results under abnormally larger motion sensor errors. The results provide a good match to the previous theoretical analysis. Our findings suggested that precise absolute localization may not be the sole path to achieving reliable trajectory planning, eliminating the necessity for high-accuracy dual-antenna GPS as well as the high-fidelity maps for SLAM localization.