Not enough data to create a plot.
Try a different view from the menu above.
Wang, Jianqiang
PreGSU-A Generalized Traffic Scene Understanding Model for Autonomous Driving based on Pre-trained Graph Attention Network
Wang, Yuning, Liu, Zhiyuan, Lin, Haotian, Jiang, Junkai, Xu, Shaobing, Wang, Jianqiang
Scene understanding, defined as learning, extraction, and representation of interactions among traffic elements, is one of the critical challenges toward high-level autonomous driving (AD). Current scene understanding methods mainly focus on one concrete single task, such as trajectory prediction and risk level evaluation. Although they perform well on specific metrics, the generalization ability is insufficient to adapt to the real traffic complexity and downstream demand diversity. In this study, we propose PreGSU, a generalized pre-trained scene understanding model based on graph attention network to learn the universal interaction and reasoning of traffic scenes to support various downstream tasks. After the feature engineering and sub-graph module, all elements are embedded as nodes to form a dynamic weighted graph. Then, four graph attention layers are applied to learn the relationships among agents and lanes. In the pre-train phase, the understanding model is trained on two self-supervised tasks: Virtual Interaction Force (VIF) modeling and Masked Road Modeling (MRM). Based on the artificial potential field theory, VIF modeling enables PreGSU to capture the agent-to-agent interactions while MRM extracts agent-to-road connections. In the fine-tuning process, the pre-trained parameters are loaded to derive detailed understanding outputs. We conduct validation experiments on two downstream tasks, i.e., trajectory prediction in urban scenario, and intention recognition in highway scenario, to verify the generalized ability and understanding ability. Results show that compared with the baselines, PreGSU achieves better accuracy on both tasks, indicating the potential to be generalized to various scenes and targets. Ablation study shows the effectiveness of pre-train task design.
D2E-An Autonomous Decision-making Dataset involving Driver States and Human Evaluation
Ke, Zehong, Jiang, Yanbo, Wang, Yuning, Cheng, Hao, Li, Jinhao, Wang, Jianqiang
With the advancement of deep learning technology, data-driven methods are increasingly used in the decision-making of autonomous driving, and the quality of datasets greatly influenced the model performance. Although current datasets have made significant progress in the collection of vehicle and environment data, emphasis on human-end data including the driver states and human evaluation is not sufficient. In addition, existing datasets consist mostly of simple scenarios such as car following, resulting in low interaction levels. In this paper, we introduce the Driver to Evaluation dataset (D2E), an autonomous decision-making dataset that contains data on driver states, vehicle states, environmental situations, and evaluation scores from human reviewers, covering a comprehensive process of vehicle decision-making. Apart from regular agents and surrounding environment information, we not only collect driver factor data including first-person view videos, physiological signals, and eye attention data, but also provide subjective rating scores from 40 human volunteers. The dataset is mixed of driving simulator scenes and real-road ones. High-interaction situations are designed and filtered to ensure behavior diversity. Through data organization, analysis, and preprocessing, D2E contains over 1100 segments of interactive driving case data covering from human driver factor to evaluation results, supporting the development of data-driven decision-making related algorithms.
Adaptive Decision-Making for Autonomous Vehicles: A Learning-Enhanced Game-Theoretic Approach in Interactive Environments
Huang, Heye, Liu, Jinxin, Shi, Guanya, Zhao, Shiyue, Li, Boqi, Wang, Jianqiang
This paper proposes an adaptive behavioral decision-making method for autonomous vehicles (AVs) focusing on complex merging scenarios. Leveraging principles from non-cooperative game theory, we develop a vehicle interaction behavior model that defines key traffic elements and integrates a multifactorial reward function. Maximum entropy inverse reinforcement learning (IRL) is employed for behavior model parameter optimization. Optimal matching parameters can be obtained using the interaction behavior feature vector and the behavior probabilities output by the vehicle interaction model. Further, a behavioral decision-making method adapted to dynamic environments is proposed. By establishing a mapping model between multiple environmental variables and model parameters, it enables parameters online learning and recognition, and achieves to output interactive behavior probabilities of AVs. Quantitative analysis employing naturalistic driving datasets (highD and exiD) and real-vehicle test data validates the model's high consistency with human decision-making. In 188 tested interaction scenarios, the average human-like similarity rate is 81.73%, with a notable 83.12% in the highD dataset. Furthermore, in 145 dynamic interactions, the method matches human decisions at 77.12%, with 6913 consistence instances. Moreover, in real-vehicle tests, a 72.73% similarity with 0% safety violations are obtained. Results demonstrate the effectiveness of our proposed method in enabling AVs to make informed adaptive behavior decisions in interactive environments.
A Risk-aware Planning Framework of UGVs in Off-Road Environment
Jiang, Junkai, Hu, Zhenhua, Xie, Zihan, Hao, Changlong, Liu, Hongyu, Xu, Wenliang, Wang, Yuning, He, Lei, Xu, Shaobing, Wang, Jianqiang
Planning module is an essential component of intelligent vehicle study. In this paper, we address the risk-aware planning problem of UGVs through a global-local planning framework which seamlessly integrates risk assessment methods. In particular, a global planning algorithm named Coarse2fine A* is proposed, which incorporates a potential field approach to enhance the safety of the planning results while ensuring the efficiency of the algorithm. A deterministic sampling method for local planning is leveraged and modified to suit off-road environment. It also integrates a risk assessment model to emphasize the avoidance of local risks. The performance of the algorithm is demonstrated through simulation experiments by comparing it with baseline algorithms, where the results of Coarse2fine A* are shown to be approximately 30% safer than those of the baseline algorithms. The practicality and effectiveness of the proposed planning framework are validated by deploying it on a real-world system consisting of a control center and a practical UGV platform.
DDM-Lag : A Diffusion-based Decision-making Model for Autonomous Vehicles with Lagrangian Safety Enhancement
Liu, Jiaqi, Hang, Peng, Zhao, Xiaocong, Wang, Jianqiang, Sun, Jian
Decision-making stands as a pivotal component in the realm of autonomous vehicles (AVs), playing a crucial role in navigating the intricacies of autonomous driving. Amidst the evolving landscape of data-driven methodologies, enhancing decision-making performance in complex scenarios has emerged as a prominent research focus. Despite considerable advancements, current learning-based decision-making approaches exhibit potential for refinement, particularly in aspects of policy articulation and safety assurance. To address these challenges, we introduce DDM-Lag, a Diffusion Decision Model,augmented with Lagrangian-based safety enhancements.In our approach, the autonomous driving decision-making conundrum is conceptualized as a Constrained Markov Decision Process (CMDP). We have crafted an Actor-Critic framework, wherein the diffusion model is employed as the actor,facilitating policy exploration and learning. The integration of safety constraints in the CMDP and the adoption of a Lagrangian relaxation-based policy optimization technique ensure enhanced decision safety. A PID controller is employed for the stable updating of model parameters. The effectiveness of DDM-Lag is evaluated through different driving tasks, showcasing improvements in decision-making safety and overall performance compared to baselines.
A Survey on Datasets for Decision-making of Autonomous Vehicle
Wang, Yuning, Han, Zeyu, Xing, Yining, Xu, Shaobing, Wang, Jianqiang
Autonomous vehicles (AV) are expected to reshape future transportation systems, and decision-making is one of the critical modules toward high-level automated driving. To overcome those complicated scenarios that rule-based methods could not cope with well, data-driven decision-making approaches have aroused more and more focus. The datasets to be used in developing data-driven methods dramatically influences the performance of decision-making, hence it is necessary to have a comprehensive insight into the existing datasets. From the aspects of collection sources, driving data can be divided into vehicle, environment, and driver related data. This study compares the state-of-the-art datasets of these three categories and summarizes their features including sensors used, annotation, and driving scenarios. Based on the characteristics of the datasets, this survey also concludes the potential applications of datasets on various aspects of AV decision-making, assisting researchers to find appropriate ones to support their own research. The future trends of AV dataset development are summarized.
MTD-GPT: A Multi-Task Decision-Making GPT Model for Autonomous Driving at Unsignalized Intersections
Liu, Jiaqi, Hang, Peng, qi, Xiao, Wang, Jianqiang, Sun, Jian
Autonomous driving technology is poised to transform transportation systems. However, achieving safe and accurate multi-task decision-making in complex scenarios, such as unsignalized intersections, remains a challenge for autonomous vehicles. This paper presents a novel approach to this issue with the development of a Multi-Task Decision-Making Generative Pre-trained Transformer (MTD-GPT) model. Leveraging the inherent strengths of reinforcement learning (RL) and the sophisticated sequence modeling capabilities of the Generative Pre-trained Transformer (GPT), the MTD-GPT model is designed to simultaneously manage multiple driving tasks, such as left turns, straight-ahead driving, and right turns at unsignalized intersections. We initially train a single-task RL expert model, sample expert data in the environment, and subsequently utilize a mixed multi-task dataset for offline GPT training. This approach abstracts the multi-task decision-making problem in autonomous driving as a sequence modeling task. The MTD-GPT model is trained and evaluated across several decision-making tasks, demonstrating performance that is either superior or comparable to that of state-of-the-art single-task decision-making models.
4D Millimeter-Wave Radar in Autonomous Driving: A Survey
Han, Zeyu, Wang, Jiahao, Xu, Zikun, Yang, Shuocheng, He, Lei, Xu, Shaobing, Wang, Jianqiang
The 4D millimeter-wave (mmWave) radar, capable of measuring the range, azimuth, elevation, and velocity of targets, has attracted considerable interest in the autonomous driving community. This is attributed to its robustness in extreme environments and outstanding velocity and elevation measurement capabilities. However, despite the rapid development of research related to its sensing theory and application, there is a notable lack of surveys on the topic of 4D mmWave radar. To address this gap and foster future research in this area, this paper presents a comprehensive survey on the use of 4D mmWave radar in autonomous driving. Reviews on the theoretical background and progress of 4D mmWave radars are presented first, including the signal processing flow, resolution improvement ways, extrinsic calibration process, and point cloud generation methods. Then it introduces related datasets and application algorithms in autonomous driving perception and localization and mapping tasks. Finally, this paper concludes by predicting future trends in the field of 4D mmWave radar. To the best of our knowledge, this is the first survey specifically for the 4D mmWave radar.
Mixed Cloud Control Testbed: Validating Vehicle-Road-Cloud Integration via Mixed Digital Twin
Dong, Jianghong, Xu, Qing, Wang, Jiawei, Yang, Chunying, Cai, Mengchi, Chen, Chaoyi, Wang, Jianqiang, Li, Keqiang
Reliable and efficient validation technologies are critical for the recent development of multi-vehicle cooperation and vehicle-road-cloud integration. In this paper, we introduce our miniature experimental platform, Mixed Cloud Control Testbed (MCCT), developed based on a new notion of Mixed Digital Twin (mixedDT). Combining Mixed Reality with Digital Twin, mixedDT integrates the virtual and physical spaces into a mixed one, where physical entities coexist and interact with virtual entities via their digital counterparts. Under the framework of mixedDT, MCCT contains three major experimental platforms in the physical, virtual and mixed spaces respectively, and provides a unified access for various human-machine interfaces and external devices such as driving simulators. A cloud unit, where the mixed experimental platform is deployed, is responsible for fusing multi-platform information and assigning control instructions, contributing to synchronous operation and real-time cross-platform interaction. Particularly, MCCT allows for multi-vehicle coordination composed of different multi-source vehicles (\eg, physical vehicles, virtual vehicles and human-driven vehicles). Validations on vehicle platooning demonstrate the flexibility and scalability of MCCT.
CATRO: Channel Pruning via Class-Aware Trace Ratio Optimization
Hu, Wenzheng, Liu, Ning, Che, Zhengping, Li, Mingyang, Tang, Jian, Zhang, Changshui, Wang, Jianqiang
Deep convolutional neural networks are shown to be overkill with high parametric and computational redundancy in many application scenarios, and an increasing number of works have explored model pruning to obtain lightweight and efficient networks. However, most existing pruning approaches are driven by empirical heuristics and rarely consider the joint impact of channels, leading to unguaranteed and suboptimal performance. In this paper, we propose a novel channel pruning method via class-aware trace ratio optimization (CATRO) to reduce the computational burden and accelerate the model inference. Utilizing class information from a few samples, CATRO measures the joint impact of multiple channels by feature space discriminations and consolidates the layer-wise impact of preserved channels. By formulating channel pruning as a submodular set function maximization problem, CATRO solves it efficiently via a two-stage greedy iterative optimization procedure. More importantly, we present theoretical justifications on convergence and performance of CATRO. Experimental results demonstrate that CATRO achieves higher accuracy with similar computation cost or lower computation cost with similar accuracy than other state-of-the-art channel pruning algorithms. In addition, because of its class-aware property, CATRO is suitable to prune efficient networks adaptively for various classification subtasks, enhancing handy deployment and usage of deep networks in real-world applications.