Wang, Jianfeng
MM-Narrator: Narrating Long-form Videos with Multimodal In-Context Learning
Zhang, Chaoyi, Lin, Kevin, Yang, Zhengyuan, Wang, Jianfeng, Li, Linjie, Lin, Chung-Ching, Liu, Zicheng, Wang, Lijuan
We present MM-Narrator, a novel system leveraging GPT-4 with multimodal in-context learning for the generation of audio descriptions (AD). Unlike previous methods that primarily focused on downstream fine-tuning with short video clips, MM-Narrator excels in generating precise audio descriptions for videos of extensive lengths, even beyond hours, in an autoregressive manner. This capability is made possible by the proposed memory-augmented generation process, which effectively utilizes both the short-term textual context and long-term visual memory through an efficient register-and-recall mechanism. These contextual memories compile pertinent past information, including storylines and character identities, ensuring an accurate tracking and depicting of story-coherent and character-centric audio descriptions. Maintaining the training-free design of MM-Narrator, we further propose a complexity-based demonstration selection strategy to largely enhance its multi-step reasoning capability via few-shot multimodal in-context learning (MM-ICL). Experimental results on MAD-eval dataset demonstrate that MM-Narrator consistently outperforms both the existing fine-tuning-based approaches and LLM-based approaches in most scenarios, as measured by standard evaluation metrics. Additionally, we introduce the first segment-based evaluator for recurrent text generation. Empowered by GPT-4, this evaluator comprehensively reasons and marks AD generation performance in various extendable dimensions.
GPT-4V in Wonderland: Large Multimodal Models for Zero-Shot Smartphone GUI Navigation
Yan, An, Yang, Zhengyuan, Zhu, Wanrong, Lin, Kevin, Li, Linjie, Wang, Jianfeng, Yang, Jianwei, Zhong, Yiwu, McAuley, Julian, Gao, Jianfeng, Liu, Zicheng, Wang, Lijuan
We present MM-Navigator, a GPT-4V-based agent for the smartphone graphical user interface (GUI) navigation task. MM-Navigator can interact with a smartphone screen as human users, and determine subsequent actions to fulfill given instructions. Our findings demonstrate that large multimodal models (LMMs), specifically GPT-4V, excel in zero-shot GUI navigation through its advanced screen interpretation, action reasoning, and precise action localization capabilities. We first benchmark MM-Navigator on our collected iOS screen dataset. According to human assessments, the system exhibited a 91\% accuracy rate in generating reasonable action descriptions and a 75\% accuracy rate in executing the correct actions for single-step instructions on iOS. Additionally, we evaluate the model on a subset of an Android screen navigation dataset, where the model outperforms previous GUI navigators in a zero-shot fashion. Our benchmark and detailed analyses aim to lay a robust groundwork for future research into the GUI navigation task. The project page is at https://github.com/zzxslp/MM-Navigator.
MM-Vet: Evaluating Large Multimodal Models for Integrated Capabilities
Yu, Weihao, Yang, Zhengyuan, Li, Linjie, Wang, Jianfeng, Lin, Kevin, Liu, Zicheng, Wang, Xinchao, Wang, Lijuan
We propose MM-Vet, an evaluation benchmark that examines large multimodal models (LMMs) on complicated multimodal tasks. Recent LMMs have shown various intriguing abilities, such as solving math problems written on the blackboard, reasoning about events and celebrities in news images, and explaining visual jokes. Rapid model advancements pose challenges to evaluation benchmark development. Problems include: (1) How to systematically structure and evaluate the complicated multimodal tasks; (2) How to design evaluation metrics that work well across question and answer types; and (3) How to give model insights beyond a simple performance ranking. To this end, we present MM-Vet, designed based on the insight that the intriguing ability to solve complicated tasks is often achieved by a generalist model being able to integrate different core vision-language (VL) capabilities. MM-Vet defines 6 core VL capabilities and examines the 16 integrations of interest derived from the capability combination. For evaluation metrics, we propose an LLM-based evaluator for open-ended outputs. The evaluator enables the evaluation across different question types and answer styles, resulting in a unified scoring metric. We evaluate representative LMMs on MM-Vet, providing insights into the capabilities of different LMM system paradigms and models. Code and data are available at https://github.com/yuweihao/MM-Vet.
The Dawn of LMMs: Preliminary Explorations with GPT-4V(ision)
Yang, Zhengyuan, Li, Linjie, Lin, Kevin, Wang, Jianfeng, Lin, Chung-Ching, Liu, Zicheng, Wang, Lijuan
Large multimodal models (LMMs) extend large language models (LLMs) with multi-sensory skills, such as visual understanding, to achieve stronger generic intelligence. In this paper, we analyze the latest model, GPT-4V(ision), to deepen the understanding of LMMs. The analysis focuses on the intriguing tasks that GPT-4V can perform, containing test samples to probe the quality and genericity of GPT-4V's capabilities, its supported inputs and working modes, and the effective ways to prompt the model. In our approach to exploring GPT-4V, we curate and organize a collection of carefully designed qualitative samples spanning a variety of domains and tasks. Observations from these samples demonstrate that GPT-4V's unprecedented ability in processing arbitrarily interleaved multimodal inputs and the genericity of its capabilities together make GPT-4V a powerful multimodal generalist system. Furthermore, GPT-4V's unique capability of understanding visual markers drawn on input images can give rise to new human-computer interaction methods such as visual referring prompting. We conclude the report with in-depth discussions on the emerging application scenarios and the future research directions for GPT-4V-based systems. We hope that this preliminary exploration will inspire future research on the next-generation multimodal task formulation, new ways to exploit and enhance LMMs to solve real-world problems, and gaining better understanding of multimodal foundation models. Finally, we acknowledge that the model under our study is solely the product of OpenAI's innovative work, and they should be fully credited for its development. Please see the GPT-4V contributions paper for the authorship and credit attribution: https://cdn.openai.com/contributions/gpt-4v.pdf
Mitigating Hallucination in Large Multi-Modal Models via Robust Instruction Tuning
Liu, Fuxiao, Lin, Kevin, Li, Linjie, Wang, Jianfeng, Yacoob, Yaser, Wang, Lijuan
Despite the promising progress in multi-modal tasks, current large multi-modal models (LMMs) are prone to hallucinating inconsistent descriptions with respect to the associated image and human instructions. This paper addresses this issue by introducing the first large and diverse visual instruction tuning dataset, named Large-scale Robust Visual (LRV)-Instruction. Our dataset comprises 400k visual instructions generated by GPT4, covering 16 vision-and-language tasks with open-ended instructions and answers. Unlike existing studies that primarily focus on positive instruction samples, we design LRV-Instruction to include both positive and negative instructions for more robust visual instruction tuning. Our negative instructions are designed at three semantic levels: (i) Nonexistent Object Manipulation, (ii) Existent Object Manipulation and (iii) Knowledge Manipulation. To efficiently measure the hallucination generated by LMMs, we propose GPT4-Assisted Visual Instruction Evaluation (GAVIE), a stable approach to evaluate visual instruction tuning like human experts. GAVIE does not require human-annotated groundtruth answers and can adapt to diverse instruction formats. We conduct comprehensive experiments to investigate the hallucination of LMMs. Our results demonstrate existing LMMs exhibit significant hallucinations when presented with our negative instructions, particularly Existent Object and Knowledge Manipulation instructions. Moreover, we successfully mitigate hallucination by finetuning MiniGPT4 and mPLUG-Owl on LRV-Instruction while improving performance on several public datasets compared to state-of-the-art methods. Additionally, we observed that a balanced ratio of positive and negative instances in the training data leads to a more robust model.
NP-SemiSeg: When Neural Processes meet Semi-Supervised Semantic Segmentation
Wang, Jianfeng, Massiceti, Daniela, Hu, Xiaolin, Pavlovic, Vladimir, Lukasiewicz, Thomas
Semi-supervised semantic segmentation involves assigning pixel-wise labels to unlabeled images at training time. This is useful in a wide range of real-world applications where collecting pixel-wise labels is not feasible in time or cost. Current approaches to semi-supervised semantic segmentation work by predicting pseudo-labels for each pixel from a class-wise probability distribution output by a model. If the predicted probability distribution is incorrect, however, this leads to poor segmentation results, which can have knock-on consequences in safety critical systems, like medical images or self-driving cars. It is, therefore, important to understand what a model does not know, which is mainly achieved by uncertainty quantification. Recently, neural processes (NPs) have been explored in semi-supervised image classification, and they have been a computationally efficient and effective method for uncertainty quantification. In this work, we move one step forward by adapting NPs to semi-supervised semantic segmentation, resulting in a new model called NP-SemiSeg. We experimentally evaluated NP-SemiSeg on the public benchmarks PASCAL VOC 2012 and Cityscapes, with different training settings, and the results verify its effectiveness.
Spatial-Frequency U-Net for Denoising Diffusion Probabilistic Models
Yuan, Xin, Li, Linjie, Wang, Jianfeng, Yang, Zhengyuan, Lin, Kevin, Liu, Zicheng, Wang, Lijuan
In this paper, we study the denoising diffusion probabilistic model (DDPM) in wavelet space, instead of pixel space, for visual synthesis. Considering the wavelet transform represents the image in spatial and frequency domains, we carefully design a novel architecture SFUNet to effectively capture the correlation for both domains. Specifically, in the standard denoising U-Net for pixel data, we supplement the 2D convolutions and spatial-only attention layers with our spatial frequency-aware convolution and attention modules to jointly model the complementary information from spatial and frequency domains in wavelet data. Our new architecture can be used as a drop-in replacement to the pixel-based network and is compatible with the vanilla DDPM training process. By explicitly modeling the wavelet signals, we find our model is able to generate images with higher quality on CIFAR-10, FFHQ, LSUN-Bedroom, and LSUN-Church datasets, than the pixel-based counterpart.
NP-Match: Towards a New Probabilistic Model for Semi-Supervised Learning
Wang, Jianfeng, Hu, Xiaolin, Lukasiewicz, Thomas
Semi-supervised learning (SSL) has been widely explored in recent years, and it is an effective way of leveraging unlabeled data to reduce the reliance on labeled data. In this work, we adjust neural processes (NPs) to the semi-supervised image classification task, resulting in a new method named NP-Match. NP-Match is suited to this task for two reasons. Firstly, NP-Match implicitly compares data points when making predictions, and as a result, the prediction of each unlabeled data point is affected by the labeled data points that are similar to it, which improves the quality of pseudo-labels. Secondly, NP-Match is able to estimate uncertainty that can be used as a tool for selecting unlabeled samples with reliable pseudo-labels. Compared with uncertainty-based SSL methods implemented with Monte-Carlo (MC) dropout, NP-Match estimates uncertainty with much less computational overhead, which can save time at both the training and the testing phases. We conducted extensive experiments on five public datasets under three semi-supervised image classification settings, namely, the standard semi-supervised image classification, the imbalanced semi-supervised image classification, and the multi-label semi-supervised image classification, and NP-Match outperforms state-of-the-art (SOTA) approaches or achieves competitive results on them, which shows the effectiveness of NP-Match and its potential for SSL. The codes are at https://github.com/Jianf-Wang/NP-Match
NUWA-XL: Diffusion over Diffusion for eXtremely Long Video Generation
Yin, Shengming, Wu, Chenfei, Yang, Huan, Wang, Jianfeng, Wang, Xiaodong, Ni, Minheng, Yang, Zhengyuan, Li, Linjie, Liu, Shuguang, Yang, Fan, Fu, Jianlong, Ming, Gong, Wang, Lijuan, Liu, Zicheng, Li, Houqiang, Duan, Nan
In this paper, we propose NUWA-XL, a novel Diffusion over Diffusion architecture for eXtremely Long video generation. Most current work generates long videos segment by segment sequentially, which normally leads to the gap between training on short videos and inferring long videos, and the sequential generation is inefficient. Instead, our approach adopts a ``coarse-to-fine'' process, in which the video can be generated in parallel at the same granularity. A global diffusion model is applied to generate the keyframes across the entire time range, and then local diffusion models recursively fill in the content between nearby frames. This simple yet effective strategy allows us to directly train on long videos (3376 frames) to reduce the training-inference gap, and makes it possible to generate all segments in parallel. To evaluate our model, we build FlintstonesHD dataset, a new benchmark for long video generation. Experiments show that our model not only generates high-quality long videos with both global and local coherence, but also decreases the average inference time from 7.55min to 26s (by 94.26\%) at the same hardware setting when generating 1024 frames. The homepage link is \url{https://msra-nuwa.azurewebsites.net/}
MM-REACT: Prompting ChatGPT for Multimodal Reasoning and Action
Yang, Zhengyuan, Li, Linjie, Wang, Jianfeng, Lin, Kevin, Azarnasab, Ehsan, Ahmed, Faisal, Liu, Zicheng, Liu, Ce, Zeng, Michael, Wang, Lijuan
We propose MM-REACT, a system paradigm that integrates ChatGPT with a pool of vision experts to achieve multimodal reasoning and action. In this paper, we define and explore a comprehensive list of advanced vision tasks that are intriguing to solve, but may exceed the capabilities of existing vision and vision-language models. To achieve such advanced visual intelligence, MM-REACT introduces a textual prompt design that can represent text descriptions, textualized spatial coordinates, and aligned file names for dense visual signals such as images and videos. MM-REACT's prompt design allows language models to accept, associate, and process multimodal information, thereby facilitating the synergetic combination of ChatGPT and various vision experts. Zero-shot experiments demonstrate MM-REACT's effectiveness in addressing the specified capabilities of interests and its wide application in different scenarios that require advanced visual understanding. Furthermore, we discuss and compare MM-REACT's system paradigm with an alternative approach that extends language models for multimodal scenarios through joint finetuning. Code, demo, video, and visualization are available at https://multimodal-react.github.io/