Goto

Collaborating Authors

 Wang, Ji


Verifying Safety of Neural Networks from Topological Perspectives

arXiv.org Artificial Intelligence

Neural networks (NNs) are increasingly applied in safety-critical systems such as autonomous vehicles. However, they are fragile and are often ill-behaved. Consequently, their behaviors should undergo rigorous guarantees before deployment in practice. In this paper, we propose a set-boundary reachability method to investigate the safety verification problem of NNs from a topological perspective. Given an NN with an input set and a safe set, the safety verification problem is to determine whether all outputs of the NN resulting from the input set fall within the safe set. In our method, the homeomorphism property and the open map property of NNs are mainly exploited, which establish rigorous guarantees between the boundaries of the input set and the boundaries of the output set. The exploitation of these two properties facilitates reachability computations via extracting subsets of the input set rather than the entire input set, thus controlling the wrapping effect in reachability analysis and facilitating the reduction of computation burdens for safety verification. The homeomorphism property exists in some widely used NNs such as invertible residual networks (i-ResNets) and Neural ordinary differential equations (Neural ODEs), and the open map is a less strict property and easier to satisfy compared with the homeomorphism property. For NNs establishing either of these properties, our set-boundary reachability method only needs to perform reachability analysis on the boundary of the input set. Moreover, for NNs that do not feature these properties with respect to the input set, we explore subsets of the input set for establishing the local homeomorphism property and then abandon these subsets for reachability computations. Finally, some examples demonstrate the performance of the proposed method.


Repairing Deep Neural Networks Based on Behavior Imitation

arXiv.org Artificial Intelligence

The increasing use of deep neural networks (DNNs) in safety-critical systems has raised concerns about their potential for exhibiting ill-behaviors. While DNN verification and testing provide post hoc conclusions regarding unexpected behaviors, they do not prevent the erroneous behaviors from occurring. To address this issue, DNN repair/patch aims to eliminate unexpected predictions generated by defective DNNs. Two typical DNN repair paradigms are retraining and fine-tuning. However, existing methods focus on the high-level abstract interpretation or inference of state spaces, ignoring the underlying neurons' outputs. This renders patch processes computationally prohibitive and limited to piecewise linear (PWL) activation functions to great extent. To address these shortcomings, we propose a behavior-imitation based repair framework, BIRDNN, which integrates the two repair paradigms for the first time. BIRDNN corrects incorrect predictions of negative samples by imitating the closest expected behaviors of positive samples during the retraining repair procedure. For the fine-tuning repair process, BIRDNN analyzes the behavior differences of neurons on positive and negative samples to identify the most responsible neurons for the erroneous behaviors. To tackle more challenging domain-wise repair problems (DRPs), we synthesize BIRDNN with a domain behavior characterization technique to repair buggy DNNs in a probably approximated correct style. We also implement a prototype tool based on BIRDNN and evaluate it on ACAS Xu DNNs. Our experimental results show that BIRDNN can successfully repair buggy DNNs with significantly higher efficiency than state-of-the-art repair tools. Additionally, BIRDNN is highly compatible with different activation functions.


Scalable Spectral Clustering with Group Fairness Constraints

arXiv.org Artificial Intelligence

There are synergies of research interests and industrial efforts in modeling fairness and correcting algorithmic bias in machine learning. In this paper, we present a scalable algorithm for spectral clustering (SC) with group fairness constraints. Group fairness is also known as statistical parity where in each cluster, each protected group is represented with the same proportion as in the entirety. While FairSC algorithm (Kleindessner et al., 2019) is able to find the fairer clustering, it is compromised by high costs due to the kernels of computing nullspaces and the square roots of dense matrices explicitly. We present a new formulation of underlying spectral computation by incorporating nullspace projection and Hotelling's deflation such that the resulting algorithm, called s-FairSC, only involves the sparse matrix-vector products and is able to fully exploit the sparsity of the fair SC model. The experimental results on the modified stochastic block model demonstrate that s-FairSC is comparable with FairSC in recovering fair clustering. Meanwhile, it is sped up by a factor of 12 for moderate model sizes. s-FairSC is further demonstrated to be scalable in the sense that the computational costs of s-FairSC only increase marginally compared to the SC without fairness constraints.


AI Empowered Net-RCA for 6G

arXiv.org Artificial Intelligence

In order to realize the vision of connecting everything worldwide, the sixthgeneration (6G) wireless networks are receiving unprecedented attention, and are anticipated to build a bridge to the smart society of the future. Compared with 5G, 6G is expected to boost network spectrum efficiency, offer massive access, improved reliability, and latency, as shown in Table 1. Consequently, future 6G networks are expected to be able to support wireless connections of various emerging applications and massive intelligent devices e.g., extended reality (XR) services, telemedicine and brain-computer interfaces, and deliver low latency and high data rates for different heterogeneous devices. We illustrate the key emerging 6G applications in Fig.1. Specifically, the application types of 6G can be classified as MBRLLC, mURLLC, HCS and MPS [8]. The most representative 6G use cases are presented as follow, the network requirements are shown in Table 2. Holographic Type Communication (HTC): HTC is expected to deliver 3D images from one or multiple source nodes to different destinations. Owing to the extremely large data for recording and reconstructing, HTC requires bandwidth up to Tbps level for transmission.


On the Properties of Kullback-Leibler Divergence Between Gaussians

arXiv.org Artificial Intelligence

Kullback-Leibler (KL) divergence is one of the most important divergence measures between probability distributions. In this paper, we investigate the properties of KL divergence between Gaussians. Firstly, for any two $n$-dimensional Gaussians $\mathcal{N}_1$ and $\mathcal{N}_2$, we find the supremum of $KL(\mathcal{N}_1||\mathcal{N}_2)$ when $KL(\mathcal{N}_2||\mathcal{N}_1)\leq \epsilon$ for $\epsilon>0$. This reveals the approximate symmetry of small KL divergence between Gaussians. We also find the infimum of $KL(\mathcal{N}_1||\mathcal{N}_2)$ when $KL(\mathcal{N}_2||\mathcal{N}_1)\geq M$ for $M>0$. Secondly, for any three $n$-dimensional Gaussians $\mathcal{N}_1, \mathcal{N}_2$ and $\mathcal{N}_3$, we find a tight bound of $KL(\mathcal{N}_1||\mathcal{N}_3)$ if $KL(\mathcal{N}_1||\mathcal{N}_2)$ and $KL(\mathcal{N}_2||\mathcal{N}_3)$ are bounded. This reveals that the KL divergence between Gaussians follows a relaxed triangle inequality. Importantly, all the bounds in the theorems presented in this paper are independent of the dimension $n$.


Keyphrase Extraction with Dynamic Graph Convolutional Networks and Diversified Inference

arXiv.org Artificial Intelligence

Keyphrase extraction (KE) aims to summarize a set of phrases that accurately express a concept or a topic covered in a given document. Recently, Sequence-to-Sequence (Seq2Seq) based generative framework is widely used in KE task, and it has obtained competitive performance on various benchmarks. The main challenges of Seq2Seq methods lie in acquiring informative latent document representation and better modeling the compositionality of the target keyphrases set, which will directly affect the quality of generated keyphrases. In this paper, we propose to adopt the Dynamic Graph Convolutional Networks (DGCN) to solve the above two problems simultaneously. Concretely, we explore to integrate dependency trees with GCN for latent representation learning. Moreover, the graph structure in our model is dynamically modified during the learning process according to the generated keyphrases. To this end, our approach is able to explicitly learn the relations within the keyphrases collection and guarantee the information interchange between encoder and decoder in both directions. Extensive experiments on various KE benchmark datasets demonstrate the effectiveness of our approach.


Pretraining-Based Natural Language Generation for Text Summarization

arXiv.org Artificial Intelligence

In this paper, we propose a novel pretraining-based encoder-decoder framework, which can generate the output sequence based on the input sequence in a two-stage manner. For the encoder of our model, we encode the input sequence into context representations using BERT. For the decoder, there are two stages in our model, in the first stage, we use a Transformer-based decoder to generate a draft output sequence. In the second stage, we mask each word of the draft sequence and feed it to BERT, then by combining the input sequence and the draft representation generated by BERT, we use a Transformer-based decoder to predict the refined word for each masked position. To the best of our knowledge, our approach is the first method which applies the BERT into text generation tasks. As the first step in this direction, we evaluate our proposed method on the text summarization task. Experimental results show that our model achieves new state-of-the-art on both CNN/Daily Mail and New York Times datasets.


Adversarial Attack and Defense on Graph Data: A Survey

arXiv.org Artificial Intelligence

Deep neural networks (DNNs) have been widely applied in various applications involving image, text, audio, and graph data. However, recent studies have shown that DNNs are vulnerable to adversarial attack. Though there are several works studying adversarial attack and defense on domains such as images and text processing, it is difficult to directly transfer the learned knowledge to graph data due to its representation challenge. Given the importance of graph analysis, increasing number of works start to analyze the robustness of machine learning models on graph. Nevertheless, current studies considering adversarial behaviors on graph data usually focus on specific types of attacks with certain assumptions. In addition, each work proposes its own mathematical formulation which makes the comparison among different methods difficult. Therefore, in this paper, we aim to survey existing adversarial attack strategies on graph data and provide an unified problem formulation which can cover all current adversarial learning studies on graph. We also compare different attacks on graph data and discuss their corresponding contributions and limitations. Finally, we discuss several future research directions in this area.


Private Model Compression via Knowledge Distillation

arXiv.org Machine Learning

The soaring demand for intelligent mobile applications calls for deploying powerful deep neural networks (DNNs) on mobile devices. However, the outstanding performance of DNNs notoriously relies on increasingly complex models, which in turn is associated with an increase in computational expense far surpassing mobile devices' capacity. What is worse, app service providers need to collect and utilize a large volume of users' data, which contain sensitive information, to build the sophisticated DNN models. Directly deploying these models on public mobile devices presents prohibitive privacy risk. To benefit from the on-device deep learning without the capacity and privacy concerns, we design a private model compression framework RONA. Following the knowledge distillation paradigm, we jointly use hint learning, distillation learning, and self learning to train a compact and fast neural network. The knowledge distilled from the cumbersome model is adaptively bounded and carefully perturbed to enforce differential privacy. We further propose an elegant query sample selection method to reduce the number of queries and control the privacy loss. A series of empirical evaluations as well as the implementation on an Android mobile device show that RONA can not only compress cumbersome models efficiently but also provide a strong privacy guarantee. For example, on SVHN, when a meaningful $(9.83,10^{-6})$-differential privacy is guaranteed, the compact model trained by RONA can obtain 20$\times$ compression ratio and 19$\times$ speed-up with merely 0.97% accuracy loss.


Layerwise Perturbation-Based Adversarial Training for Hard Drive Health Degree Prediction

arXiv.org Machine Learning

With the development of cloud computing and big data, the reliability of data storage systems becomes increasingly important. Previous researchers have shown that machine learning algorithms based on SMART attributes are effective methods to predict hard drive failures. In this paper, we use SMART attributes to predict hard drive health degrees which are helpful for taking different fault tolerant actions in advance. Given the highly imbalanced SMART datasets, it is a nontrivial work to predict the health degree precisely. The proposed model would encounter overfitting and biased fitting problems if it is trained by the traditional methods. In order to resolve this problem, we propose two strategies to better utilize imbalanced data and improve performance. Firstly, we design a layerwise perturbation-based adversarial training method which can add perturbations to any layers of a neural network to improve the generalization of the network. Secondly, we extend the training method to the semi-supervised settings. Then, it is possible to utilize unlabeled data that have a potential of failure to further improve the performance of the model. Our extensive experiments on two real-world hard drive datasets demonstrate the superiority of the proposed schemes for both supervised and semi-supervised classification. The model trained by the proposed method can correctly predict the hard drive health status 5 and 15 days in advance. Finally, we verify the generality of the proposed training method in other similar anomaly detection tasks where the dataset is imbalanced. The results argue that the proposed methods are applicable to other domains.