Not enough data to create a plot.
Try a different view from the menu above.
Wang, Hung-Ju
Eurekaverse: Environment Curriculum Generation via Large Language Models
Liang, William, Wang, Sam, Wang, Hung-Ju, Bastani, Osbert, Jayaraman, Dinesh, Ma, Yecheng Jason
Recent work has demonstrated that a promising strategy for teaching robots a wide range of complex skills is by training them on a curriculum of progressively more challenging environments. However, developing an effective curriculum of environment distributions currently requires significant expertise, which must be repeated for every new domain. Our key insight is that environments are often naturally represented as code. Thus, we probe whether effective environment curriculum design can be achieved and automated via code generation by large language models (LLM). In this paper, we introduce Eurekaverse, an unsupervised environment design algorithm that uses LLMs to sample progressively more challenging, diverse, and learnable environments for skill training. We validate Eurekaverse's effectiveness in the domain of quadrupedal parkour learning, in which a quadruped robot must traverse through a variety of obstacle courses. The automatic curriculum designed by Eurekaverse enables gradual learning of complex parkour skills in simulation and can successfully transfer to the real-world, outperforming manual training courses designed by humans.
DrEureka: Language Model Guided Sim-To-Real Transfer
Ma, Yecheng Jason, Liang, William, Wang, Hung-Ju, Wang, Sam, Zhu, Yuke, Fan, Linxi, Bastani, Osbert, Jayaraman, Dinesh
Transferring policies learned in simulation to the real world is a promising strategy for acquiring robot skills at scale. However, sim-to-real approaches typically rely on manual design and tuning of the task reward function as well as the simulation physics parameters, rendering the process slow and human-labor intensive. In this paper, we investigate using Large Language Models (LLMs) to automate and accelerate sim-to-real design. Our LLM-guided sim-to-real approach, DrEureka, requires only the physics simulation for the target task and automatically constructs suitable reward functions and domain randomization distributions to support real-world transfer. We first demonstrate that our approach can discover sim-to-real configurations that are competitive with existing human-designed ones on quadruped locomotion and dexterous manipulation tasks. Then, we showcase that our approach is capable of solving novel robot tasks, such as quadruped balancing and walking atop a yoga ball, without iterative manual design.
Exploring Simple and Transferable Recognition-Aware Image Processing
Liu, Zhuang, Wang, Hung-Ju, Zhou, Tinghui, Shen, Zhiqiang, Kang, Bingyi, Shelhamer, Evan, Darrell, Trevor
Recent progress in image recognition has stimulated the deployment of vision systems at an unprecedented scale. As a result, visual data are now often consumed not only by humans but also by machines. Existing image processing methods only optimize for better human perception, yet the resulting images may not be accurately recognized by machines. This can be undesirable, e.g., the images can be improperly handled by search engines or recommendation systems. In this work, we examine simple approaches to improve machine recognition of processed images: optimizing the recognition loss directly on the image processing network or through an intermediate input transformation model. Interestingly, the processing model's ability to enhance recognition quality can transfer when evaluated on models of different architectures, recognized categories, tasks and training datasets. This makes the methods applicable even when we do not have the knowledge of future recognition models, e.g., when uploading processed images to the Internet. We conduct experiments on multiple image processing tasks paired with ImageNet classification and PASCAL VOC detection as recognition tasks. With these simple yet effective methods, substantial accuracy gain can be achieved with strong transferability and minimal image quality loss. Through a user study we further show that the accuracy gain can transfer to a black-box cloud model. Finally, we try to explain this transferability phenomenon by demonstrating the similarities of different models' decision boundaries. Code is available at https://github.com/liuzhuang13/Transferable_RA .