Wang, Hui
Split Knowledge Distillation for Large Models in IoT: Architecture, Challenges, and Solutions
Li, Zuguang, Wu, Wen, Wu, Shaohua, Lin, Qiaohua, Sun, Yaping, Wang, Hui
Large models (LMs) have immense potential in Internet of Things (IoT) systems, enabling applications such as intelligent voice assistants, predictive maintenance, and healthcare monitoring. However, training LMs on edge servers raises data privacy concerns, while deploying them directly on IoT devices is constrained by limited computational and memory resources. We analyze the key challenges of training LMs in IoT systems, including energy constraints, latency requirements, and device heterogeneity, and propose potential solutions such as dynamic resource management, adaptive model partitioning, and clustered collaborative training. Furthermore, we propose a split knowledge distillation framework to efficiently distill LMs into smaller, deployable versions for IoT devices while ensuring raw data remains local. This framework integrates knowledge distillation and split learning to minimize energy consumption and meet low model training delay requirements. A case study is presented to evaluate the feasibility and performance of the proposed framework.
Centaur: Bridging the Impossible Trinity of Privacy, Efficiency, and Performance in Privacy-Preserving Transformer Inference
Luo, Jinglong, Chen, Guanzhong, Zhang, Yehong, Liu, Shiyu, Wang, Hui, Yu, Yue, Zhou, Xun, Qi, Yuan, Xu, Zenglin
As pre-trained models, like Transformers, are increasingly deployed on cloud platforms for inference services, the privacy concerns surrounding model parameters and inference data are becoming more acute. Current Privacy-Preserving Transformer Inference (PPTI) frameworks struggle with the "impossible trinity" of privacy, efficiency, and performance. For instance, Secure Multi-Party Computation (SMPC)-based solutions offer strong privacy guarantees but come with significant inference overhead and performance trade-offs. On the other hand, PPTI frameworks that use random permutations achieve inference efficiency close to that of plaintext and maintain accurate results but require exposing some model parameters and intermediate results, thereby risking substantial privacy breaches. Addressing this "impossible trinity" with a single technique proves challenging. To overcome this challenge, we propose Centaur, a novel hybrid PPTI framework. Unlike existing methods, Centaur protects model parameters with random permutations and inference data with SMPC, leveraging the structure of Transformer models. By designing a series of efficient privacy-preserving algorithms, Centaur leverages the strengths of both techniques to achieve a better balance between privacy, efficiency, and performance in PPTI. We comprehensively evaluate the effectiveness of Centaur on various types of Transformer models and datasets. Experimental results demonstrate that the privacy protection capabilities offered by Centaur can withstand various existing model inversion attack methods. In terms of performance and efficiency, Centaur not only maintains the same performance as plaintext inference but also improves inference speed by $5.0-30.4$ times.
Benchmarking Multimodal Retrieval Augmented Generation with Dynamic VQA Dataset and Self-adaptive Planning Agent
Li, Yangning, Li, Yinghui, Wang, Xinyu, Jiang, Yong, Zhang, Zhen, Zheng, Xinran, Wang, Hui, Zheng, Hai-Tao, Xie, Pengjun, Yu, Philip S., Huang, Fei, Zhou, Jingren
Multimodal Retrieval Augmented Generation (mRAG) plays an important role in mitigating the "hallucination" issue inherent in multimodal large language models (MLLMs). Although promising, existing heuristic mRAGs typically predefined fixed retrieval processes, which causes two issues: (1) Non-adaptive Retrieval Queries. (2) Overloaded Retrieval Queries. However, these flaws cannot be adequately reflected by current knowledge-seeking visual question answering (VQA) datasets, since the most required knowledge can be readily obtained with a standard two-step retrieval. To bridge the dataset gap, we first construct Dyn-VQA dataset, consisting of three types of "dynamic" questions, which require complex knowledge retrieval strategies variable in query, tool, and time: (1) Questions with rapidly changing answers. (2) Questions requiring multi-modal knowledge. (3) Multi-hop questions. Experiments on Dyn-VQA reveal that existing heuristic mRAGs struggle to provide sufficient and precisely relevant knowledge for dynamic questions due to their rigid retrieval processes. Hence, we further propose the first self-adaptive planning agent for multimodal retrieval, OmniSearch. The underlying idea is to emulate the human behavior in question solution which dynamically decomposes complex multimodal questions into sub-question chains with retrieval action. Extensive experiments prove the effectiveness of our OmniSearch, also provide direction for advancing mRAG. The code and dataset will be open-sourced at https://github.com/Alibaba-NLP/OmniSearch.
Addressing bias in Recommender Systems: A Case Study on Data Debiasing Techniques in Mobile Games
Wang, Yixiong, Paskevich, Maria, Wang, Hui
The mobile gaming industry, particularly the free-to-play sector, has been around for more than a decade, yet it still experiences rapid growth. The concept of games-as-service requires game developers to pay much more attention to recommendations of content in their games. With recommender systems (RS), the inevitable problem of bias in the data comes hand in hand. A lot of research has been done on the case of bias in RS for online retail or services, but much less is available for the specific case of the game industry. Also, in previous works, various debiasing techniques were tested on explicit feedback datasets, while it is much more common in mobile gaming data to only have implicit feedback. This case study aims to identify and categorize potential bias within datasets specific to model-based recommendations in mobile games, review debiasing techniques in the existing literature, and assess their effectiveness on real-world data gathered through implicit feedback. The effectiveness of these methods is then evaluated based on their debiasing quality, data requirements, and computational demands.
Transcending Language Boundaries: Harnessing LLMs for Low-Resource Language Translation
Shu, Peng, Chen, Junhao, Liu, Zhengliang, Wang, Hui, Wu, Zihao, Zhong, Tianyang, Li, Yiwei, Zhao, Huaqin, Jiang, Hanqi, Pan, Yi, Zhou, Yifan, Owl, Constance, Zhai, Xiaoming, Liu, Ninghao, Saunt, Claudio, Liu, Tianming
Large Language Models (LLMs) have demonstrated remarkable success across a wide range of tasks and domains. However, their performance in low-resource language translation, particularly when translating into these languages, remains underexplored. This gap poses significant challenges, as linguistic barriers hinder the cultural preservation and development of minority communities. To address this issue, this paper introduces a novel retrieval-based method that enhances translation quality for low-resource languages by focusing on key terms, which involves translating keywords and retrieving corresponding examples from existing data. To evaluate the effectiveness of this method, we conducted experiments translating from English into three low-resource languages: Cherokee, a critically endangered indigenous language of North America; Tibetan, a historically and culturally significant language in Asia; and Manchu, a language with few remaining speakers. Our comparison with the zero-shot performance of GPT-4o and LLaMA 3.1 405B, highlights the significant challenges these models face when translating into low-resource languages. In contrast, our retrieval-based method shows promise in improving both word-level accuracy and overall semantic understanding by leveraging existing resources more effectively.
Innovative Thinking, Infinite Humor: Humor Research of Large Language Models through Structured Thought Leaps
Wang, Han, Zhao, Yilin, Li, Dian, Wang, Xiaohan, Liu, Gang, Lan, Xuguang, Wang, Hui
Humor is a culturally nuanced aspect of human language that presents challenges for understanding and generation, requiring participants to possess good creativity and strong associative thinking. Similar to reasoning tasks like solving math problems, humor generation requires continuous reflection and revision to foster creative thinking, rather than relying on a sudden flash of inspiration like Creative Leap-of-Thought (CLoT) paradigm. Although CLoT can realize the ability of remote association generation, this paradigm fails to generate humor content. Therefore, in this paper, we propose a systematic way of thinking about generating humor and based on it, we built Creative Leap of Structured Thought (CLoST) frame. First, a reward model is necessary achieve the purpose of being able to correct errors, since there is currently no expert model of humor and a usable rule to determine whether a piece of content is humorous. Judgement-oriented instructions are designed to improve the capability of a model, and we also propose an open-domain instruction evolutionary method to fully unleash the potential. Then, through reinforcement learning, the model learns to hone its rationales of the thought chain and refine the strategies it uses. Thus, it learns to recognize and correct its mistakes, and finally generate the most humorous and creative answer. These findings deepen our understanding of the creative capabilities of LLMs and provide ways to enhance LLMs' creative abilities for cross-domain innovative applications.
A Systematic Assessment of OpenAI o1-Preview for Higher Order Thinking in Education
Latif, Ehsan, Zhou, Yifan, Guo, Shuchen, Gao, Yizhu, Shi, Lehong, Nayaaba, Matthew, Lee, Gyeonggeon, Zhang, Liang, Bewersdorff, Arne, Fang, Luyang, Yang, Xiantong, Zhao, Huaqin, Jiang, Hanqi, Lu, Haoran, Li, Jiaxi, Yu, Jichao, You, Weihang, Liu, Zhengliang, Liu, Vincent Shung, Wang, Hui, Wu, Zihao, Lu, Jin, Dou, Fei, Ma, Ping, Liu, Ninghao, Liu, Tianming, Zhai, Xiaoming
As artificial intelligence (AI) continues to advance, it demonstrates capabilities comparable to human intelligence, with significant potential to transform education and workforce development. This study evaluates OpenAI o1-preview's ability to perform higher-order cognitive tasks across 14 dimensions, including critical thinking, systems thinking, computational thinking, design thinking, metacognition, data literacy, creative thinking, abstract reasoning, quantitative reasoning, logical reasoning, analogical reasoning, and scientific reasoning. We used validated instruments like the Ennis-Weir Critical Thinking Essay Test and the Biological Systems Thinking Test to compare the o1-preview's performance with human performance systematically. Our findings reveal that o1-preview outperforms humans in most categories, achieving 150% better results in systems thinking, computational thinking, data literacy, creative thinking, scientific reasoning, and abstract reasoning. However, compared to humans, it underperforms by around 25% in logical reasoning, critical thinking, and quantitative reasoning. In analogical reasoning, both o1-preview and humans achieved perfect scores. Despite these strengths, the o1-preview shows limitations in abstract reasoning, where human psychology students outperform it, highlighting the continued importance of human oversight in tasks requiring high-level abstraction. These results have significant educational implications, suggesting a shift toward developing human skills that complement AI, such as creativity, abstract reasoning, and critical thinking. This study emphasizes the transformative potential of AI in education and calls for a recalibration of educational goals, teaching methods, and curricula to align with an AI-driven world.
Chip-Tuning: Classify Before Language Models Say
Zhu, Fangwei, Li, Dian, Huang, Jiajun, Liu, Gang, Wang, Hui, Sui, Zhifang
The rapid development in the performance of large language models (LLMs) is accompanied by the escalation of model size, leading to the increasing cost of model training and inference. Previous research has discovered that certain layers in LLMs exhibit redundancy, and removing these layers brings only marginal loss in model performance. In this paper, we adopt the probing technique to explain the layer redundancy in LLMs and demonstrate that language models can be effectively pruned with probing classifiers. We propose chip-tuning, a simple and effective structured pruning framework specialized for classification problems. Chip-tuning attaches tiny probing classifiers named chips to different layers of LLMs, and trains chips with the backbone model frozen. After selecting a chip for classification, all layers subsequent to the attached layer could be removed with marginal performance loss. Experimental results on various LLMs and datasets demonstrate that chip-tuning significantly outperforms previous state-of-the-art baselines in both accuracy and pruning ratio, achieving a pruning ratio of up to 50%. We also find that chip-tuning could be applied on multimodal models, and could be combined with model finetuning, proving its excellent compatibility.
Open-Nav: Exploring Zero-Shot Vision-and-Language Navigation in Continuous Environment with Open-Source LLMs
Qiao, Yanyuan, Lyu, Wenqi, Wang, Hui, Wang, Zixu, Li, Zerui, Zhang, Yuan, Tan, Mingkui, Wu, Qi
Vision-and-Language Navigation (VLN) tasks require an agent to follow textual instructions to navigate through 3D environments. Traditional approaches use supervised learning methods, relying heavily on domain-specific datasets to train VLN models. Recent methods try to utilize closed-source large language models (LLMs) like GPT-4 to solve VLN tasks in zero-shot manners, but face challenges related to expensive token costs and potential data breaches in real-world applications. In this work, we introduce Open-Nav, a novel study that explores open-source LLMs for zero-shot VLN in the continuous environment. Open-Nav employs a spatial-temporal chain-of-thought (CoT) reasoning approach to break down tasks into instruction comprehension, progress estimation, and decision-making. It enhances scene perceptions with fine-grained object and spatial knowledge to improve LLM's reasoning in navigation. Our extensive experiments in both simulated and real-world environments demonstrate that Open-Nav achieves competitive performance compared to using closed-source LLMs.
Evaluation of OpenAI o1: Opportunities and Challenges of AGI
Zhong, Tianyang, Liu, Zhengliang, Pan, Yi, Zhang, Yutong, Zhou, Yifan, Liang, Shizhe, Wu, Zihao, Lyu, Yanjun, Shu, Peng, Yu, Xiaowei, Cao, Chao, Jiang, Hanqi, Chen, Hanxu, Li, Yiwei, Chen, Junhao, Hu, Huawen, Liu, Yihen, Zhao, Huaqin, Xu, Shaochen, Dai, Haixing, Zhao, Lin, Zhang, Ruidong, Zhao, Wei, Yang, Zhenyuan, Chen, Jingyuan, Wang, Peilong, Ruan, Wei, Wang, Hui, Zhao, Huan, Zhang, Jing, Ren, Yiming, Qin, Shihuan, Chen, Tong, Li, Jiaxi, Zidan, Arif Hassan, Jahin, Afrar, Chen, Minheng, Xia, Sichen, Holmes, Jason, Zhuang, Yan, Wang, Jiaqi, Xu, Bochen, Xia, Weiran, Yu, Jichao, Tang, Kaibo, Yang, Yaxuan, Sun, Bolun, Yang, Tao, Lu, Guoyu, Wang, Xianqiao, Chai, Lilong, Li, He, Lu, Jin, Sun, Lichao, Zhang, Xin, Ge, Bao, Hu, Xintao, Zhang, Lian, Zhou, Hua, Zhang, Lu, Zhang, Shu, Liu, Ninghao, Jiang, Bei, Kong, Linglong, Xiang, Zhen, Ren, Yudan, Liu, Jun, Jiang, Xi, Bao, Yu, Zhang, Wei, Li, Xiang, Li, Gang, Liu, Wei, Shen, Dinggang, Sikora, Andrea, Zhai, Xiaoming, Zhu, Dajiang, Liu, Tianming
This comprehensive study evaluates the performance of OpenAI's o1-preview large language model across a diverse array of complex reasoning tasks, spanning multiple domains, including computer science, mathematics, natural sciences, medicine, linguistics, and social sciences. Through rigorous testing, o1-preview demonstrated remarkable capabilities, often achieving human-level or superior performance in areas ranging from coding challenges to scientific reasoning and from language processing to creative problem-solving. Key findings include: -83.3% success rate in solving complex competitive programming problems, surpassing many human experts. -Superior ability in generating coherent and accurate radiology reports, outperforming other evaluated models. -100% accuracy in high school-level mathematical reasoning tasks, providing detailed step-by-step solutions. -Advanced natural language inference capabilities across general and specialized domains like medicine. -Impressive performance in chip design tasks, outperforming specialized models in areas such as EDA script generation and bug analysis. -Remarkable proficiency in anthropology and geology, demonstrating deep understanding and reasoning in these specialized fields. -Strong capabilities in quantitative investing. O1 has comprehensive financial knowledge and statistical modeling skills. -Effective performance in social media analysis, including sentiment analysis and emotion recognition. The model excelled particularly in tasks requiring intricate reasoning and knowledge integration across various fields. While some limitations were observed, including occasional errors on simpler problems and challenges with certain highly specialized concepts, the overall results indicate significant progress towards artificial general intelligence.