Not enough data to create a plot.
Try a different view from the menu above.
Wang, Huan
CodeFuse-13B: A Pretrained Multi-lingual Code Large Language Model
Di, Peng, Li, Jianguo, Yu, Hang, Jiang, Wei, Cai, Wenting, Cao, Yang, Chen, Chaoyu, Chen, Dajun, Chen, Hongwei, Chen, Liang, Fan, Gang, Gong, Jie, Gong, Zi, Hu, Wen, Guo, Tingting, Lei, Zhichao, Li, Ting, Li, Zheng, Liang, Ming, Liao, Cong, Liu, Bingchang, Liu, Jiachen, Liu, Zhiwei, Lu, Shaojun, Shen, Min, Wang, Guangpei, Wang, Huan, Wang, Zhi, Xu, Zhaogui, Yang, Jiawei, Ye, Qing, Zhang, Gehao, Zhang, Yu, Zhao, Zelin, Zheng, Xunjin, Zhou, Hailian, Zhu, Lifu, Zhu, Xianying
Code Large Language Models (Code LLMs) have gained significant attention in the industry due to their wide applications in the full lifecycle of software engineering. However, the effectiveness of existing models in understanding non-English inputs for multi-lingual code-related tasks is still far from well studied. This paper introduces CodeFuse-13B, an open-sourced pre-trained code LLM. It is specifically designed for code-related tasks with both English and Chinese prompts and supports over 40 programming languages. CodeFuse achieves its effectiveness by utilizing a high quality pre-training dataset that is carefully filtered by program analyzers and optimized during the training process. Extensive experiments are conducted using real-world usage scenarios, the industry-standard benchmark HumanEval-x, and the specially designed CodeFuseEval for Chinese prompts. To assess the effectiveness of CodeFuse, we actively collected valuable human feedback from the AntGroup's software development process where CodeFuse has been successfully deployed. The results demonstrate that CodeFuse-13B achieves a HumanEval pass@1 score of 37.10%, positioning it as one of the top multi-lingual code LLMs with similar parameter sizes. In practical scenarios, such as code generation, code translation, code comments, and testcase generation, CodeFuse performs better than other models when confronted with Chinese prompts.
Latent Graph Inference with Limited Supervision
Lu, Jianglin, Xu, Yi, Wang, Huan, Bai, Yue, Fu, Yun
Latent graph inference (LGI) aims to jointly learn the underlying graph structure and node representations from data features. However, existing LGI methods commonly suffer from the issue of supervision starvation, where massive edge weights are learned without semantic supervision and do not contribute to the training loss. Consequently, these supervision-starved weights, which may determine the predictions of testing samples, cannot be semantically optimal, resulting in poor generalization. In this paper, we observe that this issue is actually caused by the graph sparsification operation, which severely destroys the important connections established between pivotal nodes and labeled ones. To address this, we propose to restore the corrupted affinities and replenish the missed supervision for better LGI. The key challenge then lies in identifying the critical nodes and recovering the corrupted affinities. We begin by defining the pivotal nodes as $k$-hop starved nodes, which can be identified based on a given adjacency matrix. Considering the high computational burden, we further present a more efficient alternative inspired by CUR matrix decomposition. Subsequently, we eliminate the starved nodes by reconstructing the destroyed connections. Extensive experiments on representative benchmarks demonstrate that reducing the starved nodes consistently improves the performance of state-of-the-art LGI methods, especially under extremely limited supervision (6.12% improvement on Pubmed with a labeling rate of only 0.3%).
Empowering ChatGPT-Like Large-Scale Language Models with Local Knowledge Base for Industrial Prognostics and Health Management
Wang, Huan, Li, Yan-Fu, Xie, Min
Prognostics and health management (PHM) is essential for industrial operation and maintenance, focusing on predicting, diagnosing, and managing the health status of industrial systems. The emergence of the ChatGPT-Like large-scale language model (LLM) has begun to lead a new round of innovation in the AI field. It has extensively promoted the level of intelligence in various fields. Therefore, it is also expected further to change the application paradigm in industrial PHM and promote PHM to become intelligent. Although ChatGPT-Like LLMs have rich knowledge reserves and powerful language understanding and generation capabilities, they lack domain-specific expertise, significantly limiting their practicability in PHM applications. To this end, this study explores the ChatGPT-Like LLM empowered by the local knowledge base (LKB) in industrial PHM to solve the above limitations. In addition, we introduce the method and steps of combining the LKB with LLMs, including LKB preparation, LKB vectorization, prompt engineering, etc. Experimental analysis of real cases shows that combining the LKB with ChatGPT-Like LLM can significantly improve its performance and make ChatGPT-Like LLMs more accurate, relevant, and able to provide more insightful information. This can promote the development of ChatGPT-Like LLMs in industrial PHM and promote their efficiency and quality.
Brain-Inspired Spiking Neural Networks for Industrial Fault Diagnosis: A Survey, Challenges, and Opportunities
Wang, Huan, Li, Yan-Fu, Gryllias, Konstantinos
In recent decades, Industrial Fault Diagnosis (IFD) has emerged as a crucial discipline concerned with detecting and gathering vital information about industrial equipment's health condition, thereby facilitating the identification of failure types and severities. The pursuit of precise and effective fault recognition has garnered substantial attention, culminating in a focus on automating equipment monitoring to preclude safety accidents and reduce reliance on human labor. The advent of artificial neural networks (ANNs) has been instrumental in augmenting intelligent IFD algorithms, particularly in the context of big data. Despite these advancements, ANNs, being a simplified biomimetic neural network model, exhibit inherent limitations such as resource and data dependencies and restricted cognitive capabilities. To address these limitations, the third-generation Spiking Neural Network (SNN), founded on principles of Brain-inspired computing, has surfaced as a promising alternative. The SNN, characterized by its biological neuron dynamics and spiking information encoding, demonstrates exceptional potential in representing spatiotemporal features. Consequently, developing SNN-based IFD models has gained momentum, displaying encouraging performance. Nevertheless, this field lacks systematic surveys to illustrate the current situation, challenges, and future directions. Therefore, this paper systematically reviews the theoretical progress of SNN-based models to answer the question of what SNN is. Subsequently, it reviews and analyzes existing SNN-based IFD models to explain why SNN needs to be used and how to use it. More importantly, this paper systematically answers the challenges, solutions, and opportunities of SNN in IFD.
MFTCoder: Boosting Code LLMs with Multitask Fine-Tuning
Liu, Bingchang, Chen, Chaoyu, Liao, Cong, Gong, Zi, Wang, Huan, Lei, Zhichao, Liang, Ming, Chen, Dajun, Shen, Min, Zhou, Hailian, Yu, Hang, Li, Jianguo
Code LLMs have emerged as a specialized research field, with remarkable studies dedicated to enhancing model's coding capabilities through fine-tuning on pre-trained models. Previous fine-tuning approaches were typically tailored to specific downstream tasks or scenarios, which meant separate fine-tuning for each task, requiring extensive training resources and posing challenges in terms of deployment and maintenance. Furthermore, these approaches failed to leverage the inherent interconnectedness among different code-related tasks. To overcome these limitations, we present a multi-task fine-tuning framework, MFTcoder, that enables simultaneous and parallel fine-tuning on multiple tasks. By incorporating various loss functions, we effectively address common challenges in multi-task learning, such as data imbalance, varying difficulty levels, and inconsistent convergence speeds. Extensive experiments have conclusively demonstrated that our multi-task fine-tuning approach outperforms both individual fine-tuning on single tasks and fine-tuning on a mixed ensemble of tasks. Moreover, MFTcoder offers efficient training capabilities, including efficient data tokenization modes and PEFT fine-tuning, resulting in significantly improved speed compared to traditional fine-tuning methods. MFTcoder seamlessly integrates with several mainstream open-source LLMs, such as CodeLLama and Qwen. Leveraging the CodeLLama foundation, our MFTcoder fine-tuned model, \textsc{CodeFuse-CodeLLama-34B}, achieves an impressive pass@1 score of 74.4\% on the HumaneEval benchmark, surpassing GPT-4 performance (67\%, zero-shot). MFTCoder is open-sourced at \url{https://github.com/codefuse-ai/MFTCOder}
UniControl: A Unified Diffusion Model for Controllable Visual Generation In the Wild
Qin, Can, Zhang, Shu, Yu, Ning, Feng, Yihao, Yang, Xinyi, Zhou, Yingbo, Wang, Huan, Niebles, Juan Carlos, Xiong, Caiming, Savarese, Silvio, Ermon, Stefano, Fu, Yun, Xu, Ran
Achieving machine autonomy and human control often represent divergent objectives in the design of interactive AI systems. Visual generative foundation models such as Stable Diffusion show promise in navigating these goals, especially when prompted with arbitrary languages. However, they often fall short in generating images with spatial, structural, or geometric controls. The integration of such controls, which can accommodate various visual conditions in a single unified model, remains an unaddressed challenge. In response, we introduce UniControl, a new generative foundation model that consolidates a wide array of controllable condition-to-image (C2I) tasks within a singular framework, while still allowing for arbitrary language prompts. UniControl enables pixel-level-precise image generation, where visual conditions primarily influence the generated structures and language prompts guide the style and context. To equip UniControl with the capacity to handle diverse visual conditions, we augment pretrained text-to-image diffusion models and introduce a task-aware HyperNet to modulate the diffusion models, enabling the adaptation to different C2I tasks simultaneously. Trained on nine unique C2I tasks, UniControl demonstrates impressive zero-shot generation abilities with unseen visual conditions. Experimental results show that UniControl often surpasses the performance of single-task-controlled methods of comparable model sizes.
SnapFusion: Text-to-Image Diffusion Model on Mobile Devices within Two Seconds
Li, Yanyu, Wang, Huan, Jin, Qing, Hu, Ju, Chemerys, Pavlo, Fu, Yun, Wang, Yanzhi, Tulyakov, Sergey, Ren, Jian
Text-to-image diffusion models can create stunning images from natural language descriptions that rival the work of professional artists and photographers. However, these models are large, with complex network architectures and tens of denoising iterations, making them computationally expensive and slow to run. As a result, high-end GPUs and cloud-based inference are required to run diffusion models at scale. This is costly and has privacy implications, especially when user data is sent to a third party. To overcome these challenges, we present a generic approach that, for the first time, unlocks running text-to-image diffusion models on mobile devices in less than $2$ seconds. We achieve so by introducing efficient network architecture and improving step distillation. Specifically, we propose an efficient UNet by identifying the redundancy of the original model and reducing the computation of the image decoder via data distillation. Further, we enhance the step distillation by exploring training strategies and introducing regularization from classifier-free guidance. Our extensive experiments on MS-COCO show that our model with $8$ denoising steps achieves better FID and CLIP scores than Stable Diffusion v$1.5$ with $50$ steps. Our work democratizes content creation by bringing powerful text-to-image diffusion models to the hands of users.
How Do Transformers Learn In-Context Beyond Simple Functions? A Case Study on Learning with Representations
Guo, Tianyu, Hu, Wei, Mei, Song, Wang, Huan, Xiong, Caiming, Savarese, Silvio, Bai, Yu
While large language models based on the transformer architecture have demonstrated remarkable in-context learning (ICL) capabilities, understandings of such capabilities are still in an early stage, where existing theory and mechanistic understanding focus mostly on simple scenarios such as learning simple function classes. This paper takes initial steps on understanding ICL in more complex scenarios, by studying learning with representations. Concretely, we construct synthetic in-context learning problems with a compositional structure, where the label depends on the input through a possibly complex but fixed representation function, composed with a linear function that differs in each instance. By construction, the optimal ICL algorithm first transforms the inputs by the representation function, and then performs linear ICL on top of the transformed dataset. We show theoretically the existence of transformers that approximately implement such algorithms with mild depth and size. Empirically, we find trained transformers consistently achieve near-optimal ICL performance in this setting, and exhibit the desired dissection where lower layers transforms the dataset and upper layers perform linear ICL. Through extensive probing and a new pasting experiment, we further reveal several mechanisms within the trained transformers, such as concrete copying behaviors on both the inputs and the representations, linear ICL capability of the upper layers alone, and a post-ICL representation selection mechanism in a harder mixture setting. These observed mechanisms align well with our theory and may shed light on how transformers perform ICL in more realistic scenarios.
On the Unlikelihood of D-Separation
Feigenbaum, Itai, Wang, Huan, Heinecke, Shelby, Niebles, Juan Carlos, Yao, Weiran, Xiong, Caiming, Arpit, Devansh
Causal discovery aims to recover a causal graph from data generated by it; constraint based methods do so by searching for a d-separating conditioning set of nodes in the graph via an oracle. In this paper, we provide analytic evidence that on large graphs, d-separation is a rare phenomenon, even when guaranteed to exist, unless the graph is extremely sparse. We then provide an analytic average case analysis of the PC Algorithm for causal discovery, as well as a variant of the SGS Algorithm we call UniformSGS. We consider a set $V=\{v_1,\ldots,v_n\}$ of nodes, and generate a random DAG $G=(V,E)$ where $(v_a, v_b) \in E$ with i.i.d. probability $p_1$ if $a b$. We provide upper bounds on the probability that a subset of $V-\{x,y\}$ d-separates $x$ and $y$, conditional on $x$ and $y$ being d-separable; our upper bounds decay exponentially fast to $0$ as $|V| \rightarrow \infty$. For the PC Algorithm, while it is known that its worst-case guarantees fail on non-sparse graphs, we show that the same is true for the average case, and that the sparsity requirement is quite demanding: for good performance, the density must go to $0$ as $|V| \rightarrow \infty$ even in the average case. For UniformSGS, while it is known that the running time is exponential for existing edges, we show that in the average case, that is the expected running time for most non-existing edges as well.
Salesforce CausalAI Library: A Fast and Scalable Framework for Causal Analysis of Time Series and Tabular Data
Arpit, Devansh, Fernandez, Matthew, Feigenbaum, Itai, Yao, Weiran, Liu, Chenghao, Yang, Wenzhuo, Josel, Paul, Heinecke, Shelby, Hu, Eric, Wang, Huan, Hoi, Stephen, Xiong, Caiming, Zhang, Kun, Niebles, Juan Carlos
We introduce the Salesforce CausalAI Library, an open-source library for causal analysis using observational data. It supports causal discovery and causal inference for tabular and time series data, of discrete, continuous and heterogeneous types. This library includes algorithms that handle linear and non-linear causal relationships between variables, and uses multi-processing for speed-up. We also include a data generator capable of generating synthetic data with specified structural equation model for the aforementioned data formats and types, that helps users control the ground-truth causal process while investigating various algorithms. Finally, we provide a user interface (UI) that allows users to perform causal analysis on data without coding. The goal of this library is to provide a fast and flexible solution for a variety of problems in the domain of causality. This technical report describes the Salesforce CausalAI API along with its capabilities, the implementations of the supported algorithms, and experiments demonstrating their performance and speed.