Plotting

 Wang, Hongzhi


MaxCorrMGNN: A Multi-Graph Neural Network Framework for Generalized Multimodal Fusion of Medical Data for Outcome Prediction

arXiv.org Artificial Intelligence

With the emergence of multimodal electronic health records, the evidence for an outcome may be captured across multiple modalities ranging from clinical to imaging and genomic data. Predicting outcomes effectively requires fusion frameworks capable of modeling fine-grained and multi-faceted complex interactions between modality features within and across patients. We develop an innovative fusion approach called MaxCorr MGNN that models non-linear modality correlations within and across patients through Hirschfeld-Gebelein-Renyi maximal correlation (MaxCorr) embeddings, resulting in a multi-layered graph that preserves the identities of the modalities and patients. We then design, for the first time, a generalized multi-layered graph neural network (MGNN) for task-informed reasoning in multi-layered graphs, that learns the parameters defining patient-modality graph connectivity and message passing in an end-to-end fashion. We evaluate our model an outcome prediction task on a Tuberculosis (TB) dataset consistently outperforming several state-of-the-art neural, graph-based and traditional fusion techniques.


Contrastive Shapelet Learning for Unsupervised Multivariate Time Series Representation Learning

arXiv.org Artificial Intelligence

Recent studies have shown great promise in unsupervised representation learning (URL) for multivariate time series, because URL has the capability in learning generalizable representation for many downstream tasks without using inaccessible labels. However, existing approaches usually adopt the models originally designed for other domains (e.g., computer vision) to encode the time series data and rely on strong assumptions to design learning objectives, which limits their ability to perform well. To deal with these problems, we propose a novel URL framework for multivariate time series by learning time-series-specific shapelet-based representation through a popular contrasting learning paradigm. To the best of our knowledge, this is the first work that explores the shapelet-based embedding in the unsupervised general-purpose representation learning. A unified shapelet-based encoder and a novel learning objective with multi-grained contrasting and multi-scale alignment are particularly designed to achieve our goal, and a data augmentation library is employed to improve the generalization. We conduct extensive experiments using tens of real-world datasets to assess the representation quality on many downstream tasks, including classification, clustering, and anomaly detection. The results demonstrate the superiority of our method against not only URL competitors, but also techniques specially designed for downstream tasks. Our code has been made publicly available at https://github.com/real2fish/CSL.


FedST: Secure Federated Shapelet Transformation for Time Series Classification

arXiv.org Artificial Intelligence

This paper explores how to customize time series classification (TSC) methods with the help of external data in a privacy-preserving federated learning (FL) scenario. To the best of our knowledge, we are the first to study on this essential topic. Achieving this goal requires us to seamlessly integrate the techniques from multiple fields including Data Mining, Machine Learning, and Security. In this paper, we systematically investigate existing TSC solutions for the centralized scenario and propose FedST, a novel FL-enabled TSC framework based on a shapelet transformation method. We recognize the federated shapelet search step as the kernel of FedST. Thus, we design a basic protocol for the FedST kernel that we prove to be secure and accurate. However, we identify that the basic protocol suffers from efficiency bottlenecks and the centralized acceleration techniques lose their efficacy due to the security issues. To speed up the federated protocol with security guarantee, we propose several optimizations tailored for the FL setting. Our theoretical analysis shows that the proposed methods are secure and more efficient. We conduct extensive experiments using both synthetic and real-world datasets. Empirical results show that our FedST solution is effective in terms of TSC accuracy, and the proposed optimizations can achieve three orders of magnitude of speedup.


TodyNet: Temporal Dynamic Graph Neural Network for Multivariate Time Series Classification

arXiv.org Artificial Intelligence

Multivariate time series classification (MTSC) is an important data mining task, which can be effectively solved by popular deep learning technology. Unfortunately, the existing deep learning-based methods neglect the hidden dependencies in different dimensions and also rarely consider the unique dynamic features of time series, which lack sufficient feature extraction capability to obtain satisfactory classification accuracy. To address this problem, we propose a novel temporal dynamic graph neural network (TodyNet) that can extract hidden spatio-temporal dependencies without undefined graph structure. It enables information flow among isolated but implicit interdependent variables and captures the associations between different time slots by dynamic graph mechanism, which further improves the classification performance of the model. Meanwhile, the hierarchical representations of graphs cannot be learned due to the limitation of GNNs. Thus, we also design a temporal graph pooling layer to obtain a global graph-level representation for graph learning with learnable temporal parameters. The dynamic graph, graph information propagation, and temporal convolution are jointly learned in an end-to-end framework. The experiments on 26 UEA benchmark datasets illustrate that the proposed TodyNet outperforms existing deep learning-based methods in the MTSC tasks.


UniTS: A Universal Time Series Analysis Framework with Self-supervised Representation Learning

arXiv.org Artificial Intelligence

Machine learning has emerged as a powerful tool for time series analysis. Existing methods are usually customized for different analysis tasks and face challenges in tackling practical problems such as partial labeling and domain shift. To achieve universal analysis and address the aforementioned problems, we develop UniTS, a novel framework that incorporates self-supervised representation learning (or pre-training). The components of UniTS are designed using sklearn-like APIs to allow flexible extensions. We demonstrate how users can easily perform an analysis task using the user-friendly GUIs, and show the superior performance of UniTS over the traditional task-specific methods without self-supervised pre-training on five mainstream tasks and two practical settings.


AutoMC: Automated Model Compression based on Domain Knowledge and Progressive search strategy

arXiv.org Artificial Intelligence

Model compression methods can reduce model complexity on the premise of maintaining acceptable performance, and thus promote the application of deep neural networks under resource constrained environments. Despite their great success, the selection of suitable compression methods and design of details of the compression scheme are difficult, requiring lots of domain knowledge as support, which is not friendly to non-expert users. To make more users easily access to the model compression scheme that best meet their needs, in this paper, we propose AutoMC, an effective automatic tool for model compression. AutoMC builds the domain knowledge on model compression to deeply understand the characteristics and advantages of each compression method under different settings. In addition, it presents a progressive search strategy to efficiently explore pareto optimal compression scheme according to the learned prior knowledge combined with the historical evaluation information. Extensive experimental results show that AutoMC can provide satisfying compression schemes within short time, demonstrating the effectiveness of AutoMC.


Search For Deep Graph Neural Networks

arXiv.org Artificial Intelligence

Current GNN-oriented NAS methods focus on the search for different layer aggregate components with shallow and simple architectures, which are limited by the 'over-smooth' problem. To further explore the benefits from structural diversity and depth of GNN architectures, we propose a GNN generation pipeline with a novel two-stage search space, which aims at automatically generating high-performance while transferable deep GNN models in a block-wise manner. Meanwhile, to alleviate the 'over-smooth' problem, we incorporate multiple flexible residual connection in our search space and apply identity mapping in the basic GNN layers. For the search algorithm, we use deep-q-learning with epsilon-greedy exploration strategy and reward reshaping. Extensive experiments on real-world datasets show that our generated GNN models outperforms existing manually designed and NAS-based ones.


TENSILE: A Tensor granularity dynamic GPU memory scheduler method towards multiple dynamic workloads system

arXiv.org Artificial Intelligence

Recently, deep learning has been an area of intense researching. However, as a kind of computing intensive task, deep learning highly relies on the the scale of the GPU memory, which is usually expensive and scarce. Although there are some extensive works have been proposed for dynamic GPU memory management, they are hard to be applied to systems with multitasking dynamic workloads, such as in-database machine learning system. In this paper, we demonstrated TENSILE, a method of managing GPU memory in tensor granularity to reduce the GPU memory peak, with taking the multitasking dynamic workloads into consideration. As far as we know, TENSILE is the first method which is designed to manage multiple workloads' GPU memory using. We implement TENSILE on our own deep learning framework, and evaluated its performance. The experiment results shows that our method can achieve less time overhead than prior works with more GPU memory saved.


Approximate Query Processing for Group-By Queries based on Conditional Generative Models

arXiv.org Artificial Intelligence

The Group-By query is an important kind of query, which is common and widely used in data warehouses, data analytics, and data visualization. Approximate query processing is an effective way to increase the querying efficiency on big data. The answer to a group-by query involves multiple values, which makes it difficult to provide sufficiently accurate estimations for all the groups. Stratified sampling improves the accuracy compared with the uniform sampling, but the samples chosen for some special queries cannot work for other queries. Online sampling chooses samples for the given query at query time, but it requires a long latency. Thus, it is a challenge to achieve both accuracy and efficiency at the same time. Facing such challenge, in this work, we propose a sample generation framework based on a conditional generative model. The sample generation framework can generate any number of samples for the given query without accessing the data. The proposed framework based on the lightweight model can be combined with stratified sampling and online aggregation to improve the estimation accuracy for group-by queries. The experimental results show that our proposed methods are both efficient and accurate.


Auto-STGCN: Autonomous Spatial-Temporal Graph Convolutional Network Search Based on Reinforcement Learning and Existing Research Results

arXiv.org Artificial Intelligence

In recent years, many spatial-temporal graph convolutional network (STGCN) models are proposed to deal with the spatial-temporal network data forecasting problem. These STGCN models have their own advantages, i.e., each of them puts forward many effective operations and achieves good prediction results in the real applications. If users can effectively utilize and combine these excellent operations integrating the advantages of existing models, then they may obtain more effective STGCN models thus create greater value using existing work. However, they fail to do so due to the lack of domain knowledge, and there is lack of automated system to help users to achieve this goal. In this paper, we fill this gap and propose Auto-STGCN algorithm, which makes use of existing models to automatically explore high-performance STGCN model for specific scenarios. Specifically, we design Unified-STGCN framework, which summarizes the operations of existing architectures, and use parameters to control the usage and characteristic attributes of each operation, so as to realize the parameterized representation of the STGCN architecture and the reorganization and fusion of advantages. Then, we present Auto-STGCN, an optimization method based on reinforcement learning, to quickly search the parameter search space provided by Unified-STGCN, and generate optimal STGCN models automatically. Extensive experiments on real-world benchmark datasets show that our Auto-STGCN can find STGCN models superior to existing STGCN models with heuristic parameters, which demonstrates the effectiveness of our proposed method.