Goto

Collaborating Authors

 Wang, Haonan


DHC: Dual-debiased Heterogeneous Co-training Framework for Class-imbalanced Semi-supervised Medical Image Segmentation

arXiv.org Artificial Intelligence

The volume-wise labeling of 3D medical images is expertise-demanded and time-consuming; hence semi-supervised learning (SSL) is highly desirable for training with limited labeled data. Imbalanced class distribution is a severe problem that bottlenecks the real-world application of these methods but was not addressed much. Aiming to solve this issue, we present a novel Dual-debiased Heterogeneous Co-training (DHC) framework for semi-supervised 3D medical image segmentation. Specifically, we propose two loss weighting strategies, namely Distribution-aware Debiased Weighting (DistDW) and Difficulty-aware Debiased Weighting (DiffDW), which leverage the pseudo labels dynamically to guide the model to solve data and learning biases. The framework improves significantly by co-training these two diverse and accurate sub-models. We also introduce more representative benchmarks for class-imbalanced semi-supervised medical image segmentation, which can fully demonstrate the efficacy of the class-imbalance designs. Experiments show that our proposed framework brings significant improvements by using pseudo labels for debiasing and alleviating the class imbalance problem. More importantly, our method outperforms the state-of-the-art SSL methods, demonstrating the potential of our framework for the more challenging SSL setting. Code and models are available at: https://github.com/xmed-lab/DHC.


Attention Weighted Mixture of Experts with Contrastive Learning for Personalized Ranking in E-commerce

arXiv.org Artificial Intelligence

Ranking model plays an essential role in e-commerce search and recommendation. An effective ranking model should give a personalized ranking list for each user according to the user preference. Existing algorithms usually extract a user representation vector from the user behavior sequence, then feed the vector into a feed-forward network (FFN) together with other features for feature interactions, and finally produce a personalized ranking score. Despite tremendous progress in the past, there is still room for improvement. Firstly, the personalized patterns of feature interactions for different users are not explicitly modeled. Secondly, most of existing algorithms have poor personalized ranking results for long-tail users with few historical behaviors due to the data sparsity. To overcome the two challenges, we propose Attention Weighted Mixture of Experts (AW-MoE) with contrastive learning for personalized ranking. Firstly, AW-MoE leverages the MoE framework to capture personalized feature interactions for different users. To model the user preference, the user behavior sequence is simultaneously fed into expert networks and the gate network. Within the gate network, one gate unit and one activation unit are designed to adaptively learn the fine-grained activation vector for experts using an attention mechanism. Secondly, a random masking strategy is applied to the user behavior sequence to simulate long-tail users, and an auxiliary contrastive loss is imposed to the output of the gate network to improve the model generalization for these users. This is validated by a higher performance gain on the long-tail user test set. Experiment results on a JD real production dataset and a public dataset demonstrate the effectiveness of AW-MoE, which significantly outperforms state-of-art methods. Notably, AW-MoE has been successfully deployed in the JD e-commerce search engine, ...


BEBERT: Efficient and Robust Binary Ensemble BERT

arXiv.org Artificial Intelligence

Pre-trained BERT models have achieved impressive accuracy on natural language processing (NLP) tasks. However, their excessive amount of parameters hinders them from efficient deployment on edge devices. Binarization of the BERT models can significantly alleviate this issue but comes with a severe accuracy drop compared with their full-precision counterparts. In this paper, we propose an efficient and robust binary ensemble BERT (BEBERT) to bridge the accuracy gap. To the best of our knowledge, this is the first work employing ensemble techniques on binary BERTs, yielding BEBERT, which achieves superior accuracy while retaining computational efficiency. Furthermore, we remove the knowledge distillation procedures during ensemble to speed up the training process without compromising accuracy. Experimental results on the GLUE benchmark show that the proposed BEBERT significantly outperforms the existing binary BERT models in accuracy and robustness with a 2x speedup on training time. Moreover, our BEBERT has only a negligible accuracy loss of 0.3% compared to the full-precision baseline while saving 15x and 13x in FLOPs and model size, respectively. In addition, BEBERT also outperforms other compressed BERTs in accuracy by up to 6.7%.


Artificial Intelligence Security Competition (AISC)

arXiv.org Artificial Intelligence

The security of artificial intelligence (AI) is an important research area towards safe, reliable, and trustworthy AI systems. To accelerate the research on AI security, the Artificial Intelligence Security Competition (AISC) was organized by the Zhongguancun Laboratory, China Industrial Control Systems Cyber Emergency Response Team, Institute for Artificial Intelligence, Tsinghua University, and RealAI as part of the Zhongguancun International Frontier Technology Innovation Competition (https://www.zgc-aisc.com/en). The competition consists of three tracks, including Deepfake Security Competition, Autonomous Driving Security Competition, and Face Recognition Security Competition. This report will introduce the competition rules of these three tracks and the solutions of top-ranking teams in each track.


Training Fair Deep Neural Networks by Balancing Influence

arXiv.org Machine Learning

Most fair machine learning methods either highly rely on the sensitive information of the training samples or require a large modification on the target models, which hinders their practical application. To address this issue, we propose a two-stage training algorithm named FAIRIF. It minimizes the loss over the reweighted data set (second stage) where the sample weights are computed to balance the model performance across different demographic groups (first stage). FAIRIF can be applied on a wide range of models trained by stochastic gradient descent without changing the model, while only requiring group annotations on a small validation set to compute sample weights. Theoretically, we show that, in the classification setting, three notions of disparity among different groups can be mitigated by training with the weights. Experiments on synthetic data sets demonstrate that FAIRIF yields models with better fairness-utility trade-offs against various types of bias; and on real-world data sets, we show the effectiveness and scalability of FAIRIF. Moreover, as evidenced by the experiments with pretrained models, FAIRIF is able to alleviate the unfairness issue of pretrained models without hurting their performance.


From Intrinsic to Counterfactual: On the Explainability of Contextualized Recommender Systems

arXiv.org Artificial Intelligence

With the prevalence of deep learning based embedding approaches, recommender systems have become a proven and indispensable tool in various information filtering applications. However, many of them remain difficult to diagnose what aspects of the deep models' input drive the final ranking decision, thus, they cannot often be understood by human stakeholders. In this paper, we investigate the dilemma between recommendation and explainability, and show that by utilizing the contextual features (e.g., item reviews from users), we can design a series of explainable recommender systems without sacrificing their performance. In particular, we propose three types of explainable recommendation strategies with gradual change of model transparency: whitebox, graybox, and blackbox. Each strategy explains its ranking decisions via different mechanisms: attention weights, adversarial perturbations, and counterfactual perturbations. We apply these explainable models on five real-world data sets under the contextualized setting where users and items have explicit interactions. The empirical results show that our model achieves highly competitive ranking performance, and generates accurate and effective explanations in terms of numerous quantitative metrics and qualitative visualizations.


Transfer Learning of Graph Neural Networks with Ego-graph Information Maximization

arXiv.org Machine Learning

Graph neural networks (GNNs) have been shown with superior performance in various applications, but training dedicated GNNs can be costly for large-scale graphs. Some recent work started to study the pre-training of GNNs. However, none of them provide theoretical insights into the design of their frameworks, or clear requirements and guarantees towards the transferability of GNNs. In this work, we establish a theoretically grounded and practically useful framework for the transfer learning of GNNs. Firstly, we propose a novel view towards the essential graph information and advocate the capturing of it as the goal of transferable GNN training, which motivates the design of Ours, a novel GNN framework based on ego-graph information maximization to analytically achieve this goal. Secondly, we specify the requirement of structure-respecting node features as the GNN input, and derive a rigorous bound of GNN transferability based on the difference between the local graph Laplacians of the source and target graphs. Finally, we conduct controlled synthetic experiments to directly justify our theoretical conclusions. Extensive experiments on real-world networks towards role identification show consistent results in the rigorously analyzed setting of direct-transfering, while those towards large-scale relation prediction show promising results in the more generalized and practical setting of transfering with fine-tuning.