Not enough data to create a plot.
Try a different view from the menu above.
Wang, Haohan
Deconstructing The Ethics of Large Language Models from Long-standing Issues to New-emerging Dilemmas
Deng, Chengyuan, Duan, Yiqun, Jin, Xin, Chang, Heng, Tian, Yijun, Liu, Han, Zou, Henry Peng, Jin, Yiqiao, Xiao, Yijia, Wang, Yichen, Wu, Shenghao, Xie, Zongxing, Gao, Kuofeng, He, Sihong, Zhuang, Jun, Cheng, Lu, Wang, Haohan
Large Language Models (LLMs) have achieved unparalleled success across diverse language modeling tasks in recent years. However, this progress has also intensified ethical concerns, impacting the deployment of LLMs in everyday contexts. This paper provides a comprehensive survey of ethical challenges associated with LLMs, from longstanding issues such as copyright infringement, systematic bias, and data privacy, to emerging problems like truthfulness and social norms. We critically analyze existing research aimed at understanding, examining, and mitigating these ethical risks. Our survey underscores integrating ethical standards and societal values into the development of LLMs, thereby guiding the development of responsible and ethically aligned language models.
From Tissue Plane to Organ World: A Benchmark Dataset for Multimodal Biomedical Image Registration using Deep Co-Attention Networks
Wang, Yifeng, Li, Weipeng, Pearce, Thomas, Wang, Haohan
Correlating neuropathology with neuroimaging findings provides a multiscale view of pathologic changes in the human organ spanning the meso- to micro-scales, and is an emerging methodology expected to shed light on numerous disease states. To gain the most information from this multimodal, multiscale approach, it is desirable to identify precisely where a histologic tissue section was taken from within the organ in order to correlate with the tissue features in exactly the same organ region. Histology-to-organ registration poses an extra challenge, as any given histologic section can capture only a small portion of a human organ. Making use of the capabilities of state-of-the-art deep learning models, we unlock the potential to address and solve such intricate challenges. Therefore, we create the ATOM benchmark dataset, sourced from diverse institutions, with the primary objective of transforming this challenge into a machine learning problem and delivering outstanding outcomes that enlighten the biomedical community. The performance of our RegisMCAN model demonstrates the potential of deep learning to accurately predict where a subregion extracted from an organ image was obtained from within the overall 3D volume. The code and dataset can be found at: https://github.com/haizailache999/Image-Registration/tree/main
Jailbreaking Large Language Models Against Moderation Guardrails via Cipher Characters
Jin, Haibo, Zhou, Andy, Menke, Joe D., Wang, Haohan
Large Language Models (LLMs) are typically harmless but remain vulnerable to carefully crafted prompts known as ``jailbreaks'', which can bypass protective measures and induce harmful behavior. Recent advancements in LLMs have incorporated moderation guardrails that can filter outputs, which trigger processing errors for certain malicious questions. Existing red-teaming benchmarks often neglect to include questions that trigger moderation guardrails, making it difficult to evaluate jailbreak effectiveness. To address this issue, we introduce JAMBench, a harmful behavior benchmark designed to trigger and evaluate moderation guardrails. JAMBench involves 160 manually crafted instructions covering four major risk categories at multiple severity levels. Furthermore, we propose a jailbreak method, JAM (Jailbreak Against Moderation), designed to attack moderation guardrails using jailbreak prefixes to bypass input-level filters and a fine-tuned shadow model functionally equivalent to the guardrail model to generate cipher characters to bypass output-level filters. Our extensive experiments on four LLMs demonstrate that JAM achieves higher jailbreak success ($\sim$ $\times$ 19.88) and lower filtered-out rates ($\sim$ $\times$ 1/6) than baselines.
Approximate Nullspace Augmented Finetuning for Robust Vision Transformers
Liu, Haoyang, Singh, Aditya, Li, Yijiang, Wang, Haohan
Enhancing the robustness of deep learning models, particularly in the realm of vision transformers (ViTs), is crucial for their real-world deployment. In this work, we provide a finetuning approach to enhance the robustness of vision transformers inspired by the concept of nullspace from linear algebra. Our investigation centers on whether a vision transformer can exhibit resilience to input variations akin to the nullspace property in linear mappings, implying that perturbations sampled from this nullspace do not influence the model's output when added to the input. Firstly, we show that for many pretrained ViTs, a non-trivial nullspace exists due to the presence of the patch embedding layer. Secondly, as nullspace is a concept associated with linear algebra, we demonstrate that it is possible to synthesize approximate nullspace elements for the non-linear blocks of ViTs employing an optimisation strategy. Finally, we propose a fine-tuning strategy for ViTs wherein we augment the training data with synthesized approximate nullspace noise. After finetuning, we find that the model demonstrates robustness to adversarial and natural image perbutations alike.
Toward a Team of AI-made Scientists for Scientific Discovery from Gene Expression Data
Liu, Haoyang, Li, Yijiang, Jian, Jinglin, Cheng, Yuxuan, Lu, Jianrong, Guo, Shuyi, Zhu, Jinglei, Zhang, Mianchen, Zhang, Miantong, Wang, Haohan
Machine learning has emerged as a powerful tool for scientific discovery, enabling researchers to extract meaningful insights from complex datasets. For instance, it has facilitated the identification of disease-predictive genes from gene expression data, significantly advancing healthcare. However, the traditional process for analyzing such datasets demands substantial human effort and expertise for the data selection, processing, and analysis. To address this challenge, we introduce a novel framework, a Team of AI-made Scientists (TAIS), designed to streamline the scientific discovery pipeline. TAIS comprises simulated roles, including a project manager, data engineer, and domain expert, each represented by a Large Language Model (LLM). These roles collaborate to replicate the tasks typically performed by data scientists, with a specific focus on identifying disease-predictive genes. Furthermore, we have curated a benchmark dataset to assess TAIS's effectiveness in gene identification, demonstrating our system's potential to significantly enhance the efficiency and scope of scientific exploration. Our findings represent a solid step towards automating scientific discovery through large language models.
GUARD: Role-playing to Generate Natural-language Jailbreakings to Test Guideline Adherence of Large Language Models
Jin, Haibo, Chen, Ruoxi, Zhou, Andy, Chen, Jinyin, Zhang, Yang, Wang, Haohan
The discovery of "jailbreaks" to bypass safety filters of Large Language Models (LLMs) and harmful responses have encouraged the community to implement safety measures. One major safety measure is to proactively test the LLMs with jailbreaks prior to the release. Therefore, such testing will require a method that can generate jailbreaks massively and efficiently. In this paper, we follow a novel yet intuitive strategy to generate jailbreaks in the style of the human generation. We propose a role-playing system that assigns four different roles to the user LLMs to collaborate on new jailbreaks. Furthermore, we collect existing jailbreaks and split them into different independent characteristics using clustering frequency and semantic patterns sentence by sentence. We organize these characteristics into a knowledge graph, making them more accessible and easier to retrieve. Our system of different roles will leverage this knowledge graph to generate new jailbreaks, which have proved effective in inducing LLMs to generate unethical or guideline-violating responses. In addition, we also pioneer a setting in our system that will automatically follow the government-issued guidelines to generate jailbreaks to test whether LLMs follow the guidelines accordingly. We refer to our system as GUARD (Guideline Upholding through Adaptive Role-play Diagnostics). We have empirically validated the effectiveness of GUARD on three cutting-edge open-sourced LLMs (Vicuna-13B, LongChat-7B, and Llama-2-7B), as well as a widely-utilized commercial LLM (ChatGPT). Moreover, our work extends to the realm of vision language models (MiniGPT-v2 and Gemini Vision Pro), showcasing GUARD's versatility and contributing valuable insights for the development of safer, more reliable LLM-based applications across diverse modalities.
Distilling Out-of-Distribution Robustness from Vision-Language Foundation Models
Zhou, Andy, Wang, Jindong, Wang, Yu-Xiong, Wang, Haohan
We propose a conceptually simple and lightweight framework for improving the robustness of vision models through the combination of knowledge distillation and data augmentation. We address the conjecture that larger models do not make for better teachers by showing strong gains in out-of-distribution robustness when distilling from pretrained foundation models. Following this finding, we propose Discrete Adversarial Distillation (DAD), which leverages a robust teacher to generate adversarial examples and a VQGAN to discretize them, creating more informative samples than standard data augmentation techniques. We provide a theoretical framework for the use of a robust teacher in the knowledge distillation with data augmentation setting and demonstrate strong gains in out-of-distribution robustness and clean accuracy across different student architectures. Notably, our method adds minor computational overhead compared to similar techniques and can be easily combined with other data augmentations for further improvements.
Robust Prompt Optimization for Defending Language Models Against Jailbreaking Attacks
Zhou, Andy, Li, Bo, Wang, Haohan
Despite advances in AI alignment, language models (LM) remain vulnerable to adversarial attacks or jailbreaking, in which adversaries modify input prompts to induce harmful behavior. While some defenses have been proposed, they focus on narrow threat models and fall short of a strong defense, which we posit should be effective, universal, and practical. To achieve this, we propose the first adversarial objective for defending LMs against jailbreaking attacks and an algorithm, robust prompt optimization (RPO), that uses gradient-based token optimization to enforce harmless outputs. This results in an easily accessible suffix that significantly improves robustness to both jailbreaks seen during optimization and unknown, held-out jailbreaks, reducing the attack success rate on Starling-7B from 84% to 8.66% across 20 jailbreaks. In addition, we find that RPO has a minor effect on benign use, is successful under adaptive attacks, and can transfer to black-box models, reducing the success rate of the strongest attack on GPT-4, GUARD, from 92% to 6%.
Generate E-commerce Product Background by Integrating Category Commonality and Personalized Style
Wang, Haohan, Feng, Wei, Lu, Yang, Li, Yaoyu, Zhang, Zheng, Lv, Jingjing, Zhu, Xin, Shen, Junjie, Lin, Zhangang, Bo, Lixing, Shao, Jingping
The state-of-the-art methods for e-commerce product background generation suffer from the inefficiency of designing product-wise prompts when scaling up the production, as well as the ineffectiveness of describing fine-grained styles when customizing personalized backgrounds for some specific brands. To address these obstacles, we integrate the category commonality and personalized style into diffusion models. Concretely, we propose a Category-Wise Generator to enable large-scale background generation for the first time. A unique identifier in the prompt is assigned to each category, whose attention is located on the background by a mask-guided cross attention layer to learn the category-wise style. Furthermore, for products with specific and fine-grained requirements in layout, elements, etc, a Personality-Wise Generator is devised to learn such personalized style directly from a reference image to resolve textual ambiguities, and is trained in a self-supervised manner for more efficient training data usage. To advance research in this field, the first large-scale e-commerce product background generation dataset BG60k is constructed, which covers more than 60k product images from over 2k categories. Experiments demonstrate that our method could generate high-quality backgrounds for different categories, and maintain the personalized background style of reference images. The link to BG60k and codes will be available soon.
Language Agent Tree Search Unifies Reasoning Acting and Planning in Language Models
Zhou, Andy, Yan, Kai, Shlapentokh-Rothman, Michal, Wang, Haohan, Wang, Yu-Xiong
While large language models (LLMs) have demonstrated impressive performance on a range of decision-making tasks, they rely on simple acting processes and fall short of broad deployment as autonomous agents. We introduce LATS (Language Agent Tree Search), a general framework that synergizes the capabilities of LLMs in planning, acting, and reasoning. Drawing inspiration from Monte Carlo tree search in model-based reinforcement learning, LATS employs LLMs as agents, value functions, and optimizers, repurposing their latent strengths for enhanced decision-making. What is crucial in this method is the use of an environment for external feedback, which offers a more deliberate and adaptive problem-solving mechanism that moves beyond the limitations of existing techniques. Our experimental evaluation across diverse domains, such as programming, HotPotQA, and WebShop, illustrates the applicability of LATS for both reasoning and acting. In particular, LATS achieves 94.4% for programming on HumanEval with GPT-4 and an average score of 75.9 for web browsing on WebShop with GPT-3.5, demonstrating the effectiveness and generality of our method.