Wang, Hao
Natural-Parameter Networks: A Class of Probabilistic Neural Networks
Wang, Hao, SHI, Xingjian, Yeung, Dit-Yan
Neural networks (NN) have achieved state-of-the-art performance in various applications. Unfortunatelyin applications where training data is insufficient, they are often prone to overfitting. One effective way to alleviate this problem is to exploit the Bayesian approach by using Bayesian neural networks (BNN). Another shortcoming ofNN is the lack of flexibility to customize different distributions for the weights and neurons according to the data, as is often done in probabilistic graphical models.To address these problems, we propose a class of probabilistic neural networks, dubbed natural-parameter networks (NPN), as a novel and lightweight Bayesian treatment of NN. NPN allows the usage of arbitrary exponential-family distributions to model the weights and neurons. Different from traditional NN and BNN, NPN takes distributions as input and goes through layers of transformation beforeproducing distributions to match the target output distributions. As a Bayesian treatment, efficient backpropagation (BP) is performed to learn the natural parameters for the distributions over both the weights and neurons. The output distributions of each layer, as byproducts, may be used as second-order representations for the associated tasks such as link prediction. Experiments on real-world datasets show that NPN can achieve state-of-the-art performance.
Collaborative Recurrent Autoencoder: Recommend while Learning to Fill in the Blanks
Wang, Hao, SHI, Xingjian, Yeung, Dit-Yan
Hybrid methods that utilize both content and rating information are commonly used in many recommender systems. However, most of them use either handcrafted features or the bag-of-words representation as a surrogate for the content information but they are neither effective nor natural enough. To address this problem, we develop a collaborative recurrent autoencoder (CRAE) which is a denoising recurrent autoencoder (DRAE) that models the generation of content sequences in the collaborative filtering (CF) setting. The model generalizes recent advances in recurrent deep learning from i.i.d. input to non-i.i.d. (CF-based) input and provides a new denoising scheme along with a novel learnable pooling scheme for the recurrent autoencoder. To do this, we first develop a hierarchical Bayesian model for the DRAE and then generalize it to the CF setting. The synergy between denoising and CF enables CRAE to make accurate recommendations while learning to fill in the blanks in sequences. Experiments on real-world datasets from different domains (CiteULike and Netflix) show that, by jointly modeling the order-aware generation of sequences for the content information and performing CF for the ratings, CRAE is able to significantly outperform the state of the art on both the recommendation task based on ratings and the sequence generation task based on content information.
Natural-Parameter Networks: A Class of Probabilistic Neural Networks
Wang, Hao, Shi, Xingjian, Yeung, Dit-Yan
Neural networks (NN) have achieved state-of-the-art performance in various applications. Unfortunately in applications where training data is insufficient, they are often prone to overfitting. One effective way to alleviate this problem is to exploit the Bayesian approach by using Bayesian neural networks (BNN). Another shortcoming of NN is the lack of flexibility to customize different distributions for the weights and neurons according to the data, as is often done in probabilistic graphical models. To address these problems, we propose a class of probabilistic neural networks, dubbed natural-parameter networks (NPN), as a novel and lightweight Bayesian treatment of NN. NPN allows the usage of arbitrary exponential-family distributions to model the weights and neurons. Different from traditional NN and BNN, NPN takes distributions as input and goes through layers of transformation before producing distributions to match the target output distributions. As a Bayesian treatment, efficient backpropagation (BP) is performed to learn the natural parameters for the distributions over both the weights and neurons. The output distributions of each layer, as byproducts, may be used as second-order representations for the associated tasks such as link prediction. Experiments on real-world datasets show that NPN can achieve state-of-the-art performance.
Collaborative Recurrent Autoencoder: Recommend while Learning to Fill in the Blanks
Wang, Hao, Shi, Xingjian, Yeung, Dit-Yan
Hybrid methods that utilize both content and rating information are commonly used in many recommender systems. However, most of them use either handcrafted features or the bag-of-words representation as a surrogate for the content information but they are neither effective nor natural enough. To address this problem, we develop a collaborative recurrent autoencoder (CRAE) which is a denoising recurrent autoencoder (DRAE) that models the generation of content sequences in the collaborative filtering (CF) setting. The model generalizes recent advances in recurrent deep learning from i.i.d. input to non-i.i.d. (CF-based) input and provides a new denoising scheme along with a novel learnable pooling scheme for the recurrent autoencoder. To do this, we first develop a hierarchical Bayesian model for the DRAE and then generalize it to the CF setting. The synergy between denoising and CF enables CRAE to make accurate recommendations while learning to fill in the blanks in sequences. Experiments on real-world datasets from different domains (CiteULike and Netflix) show that, by jointly modeling the order-aware generation of sequences for the content information and performing CF for the ratings, CRAE is able to significantly outperform the state of the art on both the recommendation task based on ratings and the sequence generation task based on content information.
Towards Bayesian Deep Learning: A Framework and Some Existing Methods
Wang, Hao, Yeung, Dit-Yan
While perception tasks such as visual object recognition and text understanding play an important role in human intelligence, the subsequent tasks that involve inference, reasoning and planning require an even higher level of intelligence. The past few years have seen major advances in many perception tasks using deep learning models. For higher-level inference, however, probabilistic graphical models with their Bayesian nature are still more powerful and flexible. To achieve integrated intelligence that involves both perception and inference, it is naturally desirable to tightly integrate deep learning and Bayesian models within a principled probabilistic framework, which we call Bayesian deep learning. In this unified framework, the perception of text or images using deep learning can boost the performance of higher-level inference and in return, the feedback from the inference process is able to enhance the perception of text or images. This paper proposes a general framework for Bayesian deep learning and reviews its recent applications on recommender systems, topic models, and control. In this paper, we also discuss the relationship and differences between Bayesian deep learning and other related topics like Bayesian treatment of neural networks.
Bayesian quantile additive regression trees
Kindo, Bereket P., Wang, Hao, Hanson, Timothy, Peña, Edsel A.
Ensemble of regression trees have become popular statistical tools for the estimation of conditional mean given a set of predictors. However, quantile regression trees and their ensembles have not yet garnered much attention despite the increasing popularity of the linear quantile regression model. This work proposes a Bayesian quantile additive regression trees model that shows very good predictive performance illustrated using simulation studies and real data applications. Further extension to tackle binary classification problems is also considered.
Efficient Average Reward Reinforcement Learning Using Constant Shifting Values
Yang, Shangdong (Nanjing University) | Gao, Yang (Nanjing University) | An, Bo (Nanyang Technological University) | Wang, Hao (Nanjing University) | Chen, Xingguo (Nanjing University of Posts and Telecommunications)
There are two classes of average reward reinforcement learning (RL) algorithms: model-based ones that explicitly maintain MDP models and model-free ones that do not learn such models. Though model-free algorithms are known to be more efficient, they often cannot converge to optimal policies due to the perturbation of parameters. In this paper, a novel model-free algorithm is proposed, which makes use of constant shifting values (CSVs) estimated from prior knowledge. To encourage exploration during the learning process, the algorithm constantly subtracts the CSV from the rewards. A terminating condition is proposed to handle the unboundedness of Q-values caused by such substraction. The convergence of the proposed algorithm is proved under very mild assumptions. Furthermore, linear function approximation is investigated to generalize our method to handle large-scale tasks. Extensive experiments on representative MDPs and the popular game Tetris show that the proposed algorithms significantly outperform the state-of-the-art ones.
Towards Bayesian Deep Learning: A Survey
Wang, Hao, Yeung, Dit-Yan
While perception tasks such as visual object recognition and text understanding play an important role in human intelligence, the subsequent tasks that involve inference, reasoning and planning require an even higher level of intelligence. The past few years have seen major advances in many perception tasks using deep learning models. For higher-level inference, however, probabilistic graphical models with their Bayesian nature are still more powerful and flexible. To achieve integrated intelligence that involves both perception and inference, it is naturally desirable to tightly integrate deep learning and Bayesian models within a principled probabilistic framework, which we call Bayesian deep learning. In this unified framework, the perception of text or images using deep learning can boost the performance of higher-level inference and in return, the feedback from the inference process is able to enhance the perception of text or images. This survey provides a general introduction to Bayesian deep learning and reviews its recent applications on recommender systems, topic models, and control. In this survey, we also discuss the relationship and differences between Bayesian deep learning and other related topics like Bayesian treatment of neural networks.
MPBART - Multinomial Probit Bayesian Additive Regression Trees
Kindo, Bereket P., Wang, Hao, Peña, Edsel A.
This article proposes Multinomial Probit Bayesian Additive Regression Trees (MPBART) as a multinomial probit extension of BART - Bayesian Additive Regression Trees (Chipman et al (2010)). MPBART is flexible to allow inclusion of predictors that describe the observed units as well as the available choice alternatives. Through two simulation studies and four real data examples, we show that MPBART exhibits very good predictive performance in comparison to other discrete choice and multiclass classification methods. To implement MPBART, we have developed an R package mpbart available freely from CRAN repositories.
Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting
SHI, Xingjian, Chen, Zhourong, Wang, Hao, Yeung, Dit-Yan, Wong, Wai-kin, WOO, Wang-chun
The goal of precipitation nowcasting is to predict the future rainfall intensity in a local region over a relatively short period of time. Very few previous studies have examined this crucial and challenging weather forecasting problem from the machine learning perspective. In this paper, we formulate precipitation nowcasting as a spatiotemporal sequence forecasting problem in which both the input and the prediction target are spatiotemporal sequences. By extending the fully connected LSTM (FC-LSTM) to have convolutional structures in both the input-to-state and state-to-state transitions, we propose the convolutional LSTM (ConvLSTM) and use it to build an end-to-end trainable model for the precipitation nowcasting problem. Experiments show that our ConvLSTM network captures spatiotemporal correlations better and consistently outperforms FC-LSTM and the state-of-the-art operational ROVER algorithm for precipitation nowcasting.