Goto

Collaborating Authors

 Wang, Haishuai


Contrast Everything: A Hierarchical Contrastive Framework for Medical Time-Series

arXiv.org Artificial Intelligence

Contrastive representation learning is crucial in medical time series analysis as it alleviates dependency on labor-intensive, domain-specific, and scarce expert annotations. However, existing contrastive learning methods primarily focus on one single data level, which fails to fully exploit the intricate nature of medical time series. To address this issue, we present COMET, an innovative hierarchical framework that leverages data consistencies at all inherent levels in medical time series. Our meticulously designed model systematically captures data consistency from four potential levels: observation, sample, trial, and patient levels. By developing contrastive loss at multiple levels, we can learn effective representations that preserve comprehensive data consistency, maximizing information utilization in a self-supervised manner. We conduct experiments in the challenging patient-independent setting. We compare COMET against six baselines using three diverse datasets, which include ECG signals for myocardial infarction and EEG signals for Alzheimer's and Parkinson's diseases. The results demonstrate that COMET consistently outperforms all baselines, particularly in setup with 10% and 1% labeled data fractions across all datasets. These results underscore the significant impact of our framework in advancing contrastive representation learning techniques for medical time series.


Graph Neural Architecture Search with GPT-4

arXiv.org Artificial Intelligence

Graph Neural Architecture Search (GNAS) has shown promising results in automatically designing graph neural networks. However, GNAS still requires intensive human labor with rich domain knowledge to design the search space and search strategy. In this paper, we integrate GPT-4 into GNAS and propose a new GPT-4 based Graph Neural Architecture Search method (GPT4GNAS for short). The basic idea of our method is to design a new class of prompts for GPT-4 to guide GPT-4 toward the generative task of graph neural architectures. The prompts consist of descriptions of the search space, search strategy, and search feedback of GNAS. By iteratively running GPT-4 with the prompts, GPT4GNAS generates more accurate graph neural networks with fast convergence. Experimental results show that embedding GPT-4 into GNAS outperforms the state-of-the-art GNAS methods.


Multi-View Fusion and Distillation for Subgrade Distresses Detection based on 3D-GPR

arXiv.org Artificial Intelligence

The application of 3D ground-penetrating radar (3D-GPR) for subgrade distress detection has gained widespread popularity. To enhance the efficiency and accuracy of detection, pioneering studies have attempted to adopt automatic detection techniques, particularly deep learning. However, existing works typically rely on traditional 1D A-scan, 2D B-scan or 3D C-scan data of the GPR, resulting in either insufficient spatial information or high computational complexity. To address these challenges, we introduce a novel methodology for the subgrade distress detection task by leveraging the multi-view information from 3D-GPR data. Moreover, we construct a real multi-view image dataset derived from the original 3D-GPR data for the detection task, which provides richer spatial information compared to A-scan and B-scan data, while reducing computational complexity compared to C-scan data. Subsequently, we develop a novel \textbf{M}ulti-\textbf{V}iew \textbf{V}usion and \textbf{D}istillation framework, \textbf{GPR-MVFD}, specifically designed to optimally utilize the multi-view GPR dataset. This framework ingeniously incorporates multi-view distillation and attention-based fusion to facilitate significant feature extraction for subgrade distresses. In addition, a self-adaptive learning mechanism is adopted to stabilize the model training and prevent performance degeneration in each branch. Extensive experiments conducted on this new GPR benchmark demonstrate the effectiveness and efficiency of our proposed framework. Our framework outperforms not only the existing GPR baselines, but also the state-of-the-art methods in the fields of multi-view learning, multi-modal learning, and knowledge distillation. We will release the constructed multi-view GPR dataset with expert-annotated labels and the source codes of the proposed framework.


Universal Network Representation for Heterogeneous Information Networks

arXiv.org Artificial Intelligence

Network representation aims to represent the nodes in a network as continuous and compact vectors, and has attracted much attention in recent years due to its ability to capture complex structure relationships inside networks. However, existing network representation methods are commonly designed for homogeneous information networks where all the nodes (entities) of a network are of the same type, e.g., papers in a citation network. In this paper, we propose a universal network representation approach (UNRA), that represents different types of nodes in heterogeneous information networks in a continuous and common vector space. The UNRA is built on our latest mutually updated neural language module, which simultaneously captures inter-relationship among homogeneous nodes and node-content correlation. Relationships between different types of nodes are also assembled and learned in a unified framework. Experiments validate that the UNRA achieves outstanding performance, compared to six other state-of-the-art algorithms, in node representation, node classification, and network visualization. In node classification, the UNRA achieves a 3\% to 132\% performance improvement in terms of accuracy.


Boosting for Real-Time Multivariate Time Series Classification

AAAI Conferences

Multivariate time series (MTS) is useful for detecting abnormity cases in healthcare area. In this paper, we propose an ensemble boosting algorithm to classify abnormality surgery time series based on learning shapelet features. Specifically, we first learn shapelets by logistic regression from multivariate time series. Based on the learnt shapelets, we propose a MTS ensemble boosting approach when the time series arrives as stream fashion. Experimental results on a real-world medical dataset demonstrate the effectiveness of the proposed methods.