Goto

Collaborating Authors

 Wang, Haifeng


A Thorough Examination on Zero-shot Dense Retrieval

arXiv.org Artificial Intelligence

Recent years have witnessed the significant advance in dense retrieval (DR) based on powerful pre-trained language models (PLM). DR models have achieved excellent performance in several benchmark datasets, while they are shown to be not as competitive as traditional sparse retrieval models (e.g., BM25) in a zero-shot retrieval setting. However, in the related literature, there still lacks a detailed and comprehensive study on zero-shot retrieval. In this paper, we present the first thorough examination of the zero-shot capability of DR models. We aim to identify the key factors and analyze how they affect zero-shot retrieval performance. In particular, we discuss the effect of several key factors related to source training set, analyze the potential bias from the target dataset, and review and compare existing zero-shot DR models. Our findings provide important evidence to better understand and develop zero-shot DR models.


RocketQAv2: A Joint Training Method for Dense Passage Retrieval and Passage Re-ranking

arXiv.org Artificial Intelligence

In various natural language processing tasks, passage retrieval and passage re-ranking are two key procedures in finding and ranking relevant information. Since both the two procedures contribute to the final performance, it is important to jointly optimize them in order to achieve mutual improvement. In this paper, we propose a novel joint training approach for dense passage retrieval and passage re-ranking. A major contribution is that we introduce the dynamic listwise distillation, where we design a unified listwise training approach for both the retriever and the re-ranker. During the dynamic distillation, the retriever and the re-ranker can be adaptively improved according to each other's relevance information. We also propose a hybrid data augmentation strategy to construct diverse training instances for listwise training approach. Extensive experiments show the effectiveness of our approach on both MSMARCO and Natural Questions datasets. Our code is available at https://github.com/PaddlePaddle/RocketQA.


ERNIE-ViLG 2.0: Improving Text-to-Image Diffusion Model with Knowledge-Enhanced Mixture-of-Denoising-Experts

arXiv.org Artificial Intelligence

Recent progress in diffusion models has revolutionized the popular technology of text-to-image generation. While existing approaches could produce photorealistic high-resolution images with text conditions, there are still several open problems to be solved, which limits the further improvement of image fidelity and text relevancy. In this paper, we propose ERNIE-ViLG 2.0, a large-scale Chinese text-to-image diffusion model, to progressively upgrade the quality of generated images by: (1) incorporating fine-grained textual and visual knowledge of key elements in the scene, and (2) utilizing different denoising experts at different denoising stages. With the proposed mechanisms, ERNIE-ViLG 2.0 not only achieves a new state-of-the-art on MS-COCO with zero-shot FID score of 6.75, but also significantly outperforms recent models in terms of image fidelity and image-text alignment, with side-by-side human evaluation on the bilingual prompt set ViLG-300.


A Fine-grained Interpretability Evaluation Benchmark for Neural NLP

arXiv.org Artificial Intelligence

While there is increasing concern about the interpretability of neural models, the evaluation of interpretability remains an open problem, due to the lack of proper evaluation datasets and metrics. In this paper, we present a novel benchmark to evaluate the interpretability of both neural models and saliency methods. This benchmark covers three representative NLP tasks: sentiment analysis, textual similarity and reading comprehension, each provided with both English and Chinese annotated data. In order to precisely evaluate the interpretability, we provide token-level rationales that are carefully annotated to be sufficient, compact and comprehensive. We also design a new metric, i.e., the consistency between the rationales before and after perturbations, to uniformly evaluate the interpretability on different types of tasks. Based on this benchmark, we conduct experiments on three typical models with three saliency methods, and unveil their strengths and weakness in terms of interpretability. We will release this benchmark https://www.luge.ai/#/luge/task/taskDetail?taskId=15 and hope it can facilitate the research in building trustworthy systems.


PLATO-K: Internal and External Knowledge Enhanced Dialogue Generation

arXiv.org Artificial Intelligence

Recently, the practical deployment of open-domain dialogue systems has been plagued by the knowledge issue of information deficiency and factual inaccuracy. To this end, we introduce PLATO-K based on two-stage dialogic learning to strengthen internal knowledge memorization and external knowledge exploitation. In the first stage, PLATO-K learns through massive dialogue corpora and memorizes essential knowledge into model parameters. In the second stage, PLATO-K mimics human beings to search for external information and to leverage the knowledge in response generation. Extensive experiments reveal that the knowledge issue is alleviated significantly in PLATO-K with such comprehensive internal and external knowledge enhancement. Compared to the existing state-of-the-art Chinese dialogue model, the overall engagingness of PLATO-K is improved remarkably by 36.2% and 49.2% on chit-chat and knowledge-intensive conversations.


Docking-based Virtual Screening with Multi-Task Learning

arXiv.org Artificial Intelligence

Machine learning shows great potential in virtual screening for drug discovery. Current efforts on accelerating docking-based virtual screening do not consider using existing data of other previously developed targets. To make use of the knowledge of the other targets and take advantage of the existing data, in this work, we apply multi-task learning to the problem of docking-based virtual screening. With two large docking datasets, the results of extensive experiments show that multi-task learning can achieve better performances on docking score prediction. By learning knowledge across multiple targets, the model trained by multi-task learning shows a better ability to adapt to a new target. Additional empirical study shows that other problems in drug discovery, such as the experimental drug-target affinity prediction, may also benefit from multi-task learning. Our results demonstrate that multi-task learning is a promising machine learning approach for docking-based virtual screening and accelerating the process of drug discovery.


End-to-end Adaptive Distributed Training on PaddlePaddle

arXiv.org Artificial Intelligence

Distributed training has become a pervasive and effective approach for training a large neural network (NN) model with processing massive data. However, it is very challenging to satisfy requirements from various NN models, diverse computing resources, and their dynamic changes during a training job. In this study, we design our distributed training framework in a systematic end-to-end view to provide the built-in adaptive ability for different scenarios, especially for industrial applications and production environments, by fully considering resource allocation, model partition, task placement, and distributed execution. Based on the unified distributed graph and the unified cluster object, our adaptive framework is equipped with a global cost model and a global planner, which can enable arbitrary parallelism, resource-aware placement, multi-mode execution, fault-tolerant, and elastic distributed training. The experiments demonstrate that our framework can satisfy various requirements from the diversity of applications and the heterogeneity of resources with highly competitive performance. The ERNIE language model with 260 billion parameters is efficiently trained on thousands of AI processors with 91.7% weak scalability. The throughput of the model from the recommender system by employing the heterogeneous pipeline asynchronous execution can be increased up to 2.1 times and 3.3 times that of the GPU-only and CPU-only training respectively. Moreover, the fault-tolerant and elastic distributed training have been successfully applied to the online industrial applications, which give a reduction of 34.49% in the number of failed long-term training jobs and an increase of 33.91% for the global scheduling efficiency in the production environment.


CELLS: Cost-Effective Evolution in Latent Space for Goal-Directed Molecular Generation

arXiv.org Artificial Intelligence

Efficiently discovering molecules that meet various property requirements can significantly benefit the drug discovery industry. Since it is infeasible to search over the entire chemical space, recent works adopt generative models for goal-directed molecular generation. They tend to utilize the iterative processes, optimizing the parameters of the molecular generative models at each iteration to produce promising molecules for further validation. Assessments are exploited to evaluate the generated molecules at each iteration, providing direction for model optimization. However, most previous works require a massive number of expensive and time-consuming assessments, e.g., wet experiments and molecular dynamic simulations, leading to the lack of practicability. To reduce the assessments in the iterative process, we propose a cost-effective evolution strategy in latent space, which optimizes the molecular latent representation vectors instead. We adopt a pre-trained molecular generative model to map the latent and observation spaces, taking advantage of the large-scale unlabeled molecules to learn chemical knowledge. To further reduce the number of expensive assessments, we introduce a pre-screener as the proxy to the assessments. We conduct extensive experiments on multiple optimization tasks comparing the proposed framework to several advanced techniques, showing that the proposed framework achieves better performance with fewer assessments.


Building Chinese Biomedical Language Models via Multi-Level Text Discrimination

arXiv.org Artificial Intelligence

Pre-trained language models (PLMs), such as BERT and GPT, have revolutionized the field of NLP, not only in the general domain but also in the biomedical domain. Most prior efforts in building biomedical PLMs have resorted simply to domain adaptation and focused mainly on English. In this work we introduce eHealth, a biomedical PLM in Chinese built with a new pre-training framework. This new framework trains eHealth as a discriminator through both token-level and sequence-level discrimination. The former is to detect input tokens corrupted by a generator and select their original signals from plausible candidates, while the latter is to further distinguish corruptions of a same original sequence from those of the others. As such, eHealth can learn language semantics at both the token and sequence levels. Extensive experiments on 11 Chinese biomedical language understanding tasks of various forms verify the effectiveness and superiority of our approach. The pre-trained model is available to the public at \url{https://github.com/PaddlePaddle/Research/tree/master/KG/eHealth} and the code will also be released later.


DuRecDial 2.0: A Bilingual Parallel Corpus for Conversational Recommendation

arXiv.org Artificial Intelligence

In this paper, we provide a bilingual parallel human-to-human recommendation dialog dataset (DuRecDial 2.0) to enable researchers to explore a challenging task of multilingual and cross-lingual conversational recommendation. The difference between DuRecDial 2.0 and existing conversational recommendation datasets is that the data item (Profile, Goal, Knowledge, Context, Response) in DuRecDial 2.0 is annotated in two languages, both English and Chinese, while other datasets are built with the setting of a single language. We collect 8.2k dialogs aligned across English and Chinese languages (16.5k dialogs and 255k utterances in total) that are annotated by crowdsourced workers with strict quality control procedure. We then build monolingual, multilingual, and cross-lingual conversational recommendation baselines on DuRecDial 2.0. Experiment results show that the use of additional English data can bring performance improvement for Chinese conversational recommendation, indicating the benefits of DuRecDial 2.0. Finally, this dataset provides a challenging testbed for future studies of monolingual, multilingual, and cross-lingual conversational recommendation.