Plotting

 Wang, Guoyin


TaDSE: Template-aware Dialogue Sentence Embeddings

arXiv.org Artificial Intelligence

Learning high quality sentence embeddings from dialogues has drawn increasing attentions as it is essential to solve a variety of dialogue-oriented tasks with low annotation cost. However, directly annotating and gathering utterance relationships in conversations are difficult, while token-level annotations, \eg, entities, slots and templates, are much easier to obtain. General sentence embedding methods are usually sentence-level self-supervised frameworks and cannot utilize token-level extra knowledge. In this paper, we introduce Template-aware Dialogue Sentence Embedding (TaDSE), a novel augmentation method that utilizes template information to effectively learn utterance representation via self-supervised contrastive learning framework. TaDSE augments each sentence with its corresponding template and then conducts pairwise contrastive learning over both sentence and template. We further enhance the effect with a synthetically augmented dataset that enhances utterance-template relation, in which entity detection (slot-filling) is a preliminary step. We evaluate TaDSE performance on five downstream benchmark datasets. The experiment results show that TaDSE achieves significant improvements over previous SOTA methods, along with a consistent Intent Classification task performance improvement margin. We further introduce a novel analytic instrument of Semantic Compression method, for which we discover a correlation with uniformity and alignment. Our code will be released soon.


Ranking-Enhanced Unsupervised Sentence Representation Learning

arXiv.org Artificial Intelligence

Unsupervised sentence representation learning has progressed through contrastive learning and data augmentation methods such as dropout masking. Despite this progress, sentence encoders are still limited to using only an input sentence when predicting its semantic vector. In this work, we show that the semantic meaning of a sentence is also determined by nearest-neighbor sentences that are similar to the input sentence. Based on this finding, we propose a novel unsupervised sentence encoder, RankEncoder. RankEncoder predicts the semantic vector of an input sentence by leveraging its relationship with other sentences in an external corpus, as well as the input sentence itself. We evaluate RankEncoder on semantic textual benchmark datasets. From the experimental results, we verify that 1) RankEncoder Figure 1: Vector representations of sentences and their achieves 80.07% Spearman's correlation, neighbor sentences. The neighbor sentences reveal that a 1.1% absolute improvement compared (a, c) share more semantic meanings than (a, b). This to the previous state-of-the-art performance, 2) captures more accurate semantic similarity scores than RankEncoder is universally applicable to existing their vectors.


Towards Building the Federated GPT: Federated Instruction Tuning

arXiv.org Artificial Intelligence

While ``instruction-tuned" generative large language models (LLMs) have demonstrated an impressive ability to generalize to new tasks, the training phases heavily rely on large amounts of diverse and high-quality instruction data (such as ChatGPT and GPT-4). Unfortunately, acquiring high-quality data, especially when it comes to human-written data, can pose significant challenges both in terms of cost and accessibility. Moreover, concerns related to privacy can further limit access to such data, making the process of obtaining it a complex and nuanced undertaking. Consequently, this hinders the generality of the tuned models and may restrict their effectiveness in certain contexts. To tackle this issue, our study introduces a new approach called Federated Instruction Tuning (FedIT), which leverages federated learning (FL) as the learning framework for the instruction tuning of LLMs. This marks the first exploration of FL-based instruction tuning for LLMs. This is especially important since text data is predominantly generated by end users. Therefore, it is imperative to design and adapt FL approaches to effectively leverage these users' diverse instructions stored on local devices, while preserving privacy and ensuring data security. In the current paper, by conducting widely used GPT-4 auto-evaluation, we demonstrate that by exploiting the heterogeneous and diverse sets of instructions on the client's end with the proposed framework FedIT, we improved the performance of LLMs compared to centralized training with only limited local instructions. Further, in this paper, we developed a Github repository named Shepherd. This repository offers a foundational framework for exploring federated fine-tuning of LLMs using heterogeneous instructions across diverse categories.


GBMST: An Efficient Minimum Spanning Tree Clustering Based on Granular-Ball Computing

arXiv.org Artificial Intelligence

Most of the existing clustering methods are based on a single granularity of information, such as the distance and density of each data. This most fine-grained based approach is usually inefficient and susceptible to noise. Therefore, we propose a clustering algorithm that combines multi-granularity Granular-Ball and minimum spanning tree (MST). We construct coarsegrained granular-balls, and then use granular-balls and MST to implement the clustering method based on "large-scale priority", which can greatly avoid the influence of outliers and accelerate the construction process of MST. Experimental results on several data sets demonstrate the power of the algorithm. All codes have been released at https://github.com/xjnine/GBMST.


Granular-ball Optimization Algorithm

arXiv.org Artificial Intelligence

The existing intelligent optimization algorithms are designed based on the finest granularity, i.e., a point. This leads to weak global search ability and inefficiency. To address this problem, we proposed a novel multi-granularity optimization algorithm, namely granular-ball optimization algorithm (GBO), by introducing granular-ball computing. GBO uses many granular-balls to cover the solution space. Quite a lot of small and fine-grained granular-balls are used to depict the important parts, and a little number of large and coarse-grained granular-balls are used to depict the inessential parts. Fine multi-granularity data description ability results in a higher global search capability and faster convergence speed. In comparison with the most popular and state-of-the-art algorithms, the experiments on twenty benchmark functions demonstrate its better performance. The faster speed, higher approximation ability of optimal solution, no hyper-parameters, and simpler design of GBO make it an all-around replacement of most of the existing popular intelligent optimization algorithms.


Open World Classification with Adaptive Negative Samples

arXiv.org Artificial Intelligence

Open world classification is a task in natural language processing with key practical relevance and impact. Since the open or {\em unknown} category data only manifests in the inference phase, finding a model with a suitable decision boundary accommodating for the identification of known classes and discrimination of the open category is challenging. The performance of existing models is limited by the lack of effective open category data during the training stage or the lack of a good mechanism to learn appropriate decision boundaries. We propose an approach based on \underline{a}daptive \underline{n}egative \underline{s}amples (ANS) designed to generate effective synthetic open category samples in the training stage and without requiring any prior knowledge or external datasets. Empirically, we find a significant advantage in using auxiliary one-versus-rest binary classifiers, which effectively utilize the generated negative samples and avoid the complex threshold-seeking stage in previous works. Extensive experiments on three benchmark datasets show that ANS achieves significant improvements over state-of-the-art methods.


Research on Efficient Fuzzy Clustering Method Based on Local Fuzzy Granular balls

arXiv.org Artificial Intelligence

In recent years, the problem of fuzzy clustering has been widely concerned. The membership iteration of existing methods is mostly considered globally, which has considerable problems in noisy environments, and iterative calculations for clusters with a large number of different sample sizes are not accurate and efficient. In this paper, starting from the strategy of large-scale priority, the data is fuzzy iterated using granular-balls, and the membership degree of data only considers the two granular-balls where it is located, thus improving the efficiency of iteration. The formed fuzzy granular-balls set can use more processing methods in the face of different data scenarios, which enhances the practicability of fuzzy clustering calculations.


GBC: An Efficient and Adaptive Clustering Algorithm Based on Granular-Ball

arXiv.org Artificial Intelligence

Existing clustering methods are based on a single granularity of information, such as the distance and density of each data. This most fine-grained based approach is usually inefficient and susceptible to noise. Inspired by adaptive process of granular-ball division and differentiation, we present a novel clustering approach that retains the speed and efficiency of K-means clustering while out-performing time-tested density clustering approaches widely used in industry today. Our simple, robust, adaptive granular-ball clustering method can efficiently recognize clusters with unknown and complex shapes without the use of extra parameters. Moreover, the proposed method provides an efficient, adaptive way to depict the world, and will promote the research and development of adaptive and efficient AI technologies, especially density computing models, and improve the efficiency of many existing clustering methods.


Sketch Less Face Image Retrieval: A New Challenge

arXiv.org Artificial Intelligence

In some specific scenarios, face sketch was used to identify a person. However, drawing a complete face sketch often needs skills and takes time, which hinder its widespread applicability in the practice. In this study, we proposed a new task named sketch less face image retrieval (SLFIR), in which the retrieval was carried out at each stroke and aim to retrieve the target face photo using a partial sketch with as few strokes as possible (see Fig.1). Firstly, we developed a method to generate the data of sketch with drawing process, and opened such dataset; Secondly, we proposed a two-stage method as the baseline for SLFIR that (1) A triplet network, was first adopt to learn the joint embedding space shared between the complete sketch and its target face photo; (2) Regarding the sketch drawing episode as a sequence, we designed a LSTM module to optimize the representation of the incomplete face sketch. Experiments indicate that the new framework can finish the retrieval using a partial or pool drawing sketch.


A novel cluster internal evaluation index based on hyper-balls

arXiv.org Artificial Intelligence

It is crucial to evaluate the quality and determine the optimal number of clusters in cluster analysis. In this paper, the multi-granularity characterization of the data set is carried out to obtain the hyper-balls. The cluster internal evaluation index based on hyper-balls(HCVI) is defined. Moreover, a general method for determining the optimal number of clusters based on HCVI is proposed. The proposed methods can evaluate the clustering results produced by the several classic methods and determine the optimal cluster number for data sets containing noises and clusters with arbitrary shapes. The experimental results on synthetic and real data sets indicate that the new index outperforms existing ones.