Not enough data to create a plot.
Try a different view from the menu above.
Wang, Fu Lee
Graph Similarity Computation via Interpretable Neural Node Alignment
Wang, Jingjing, Zhu, Hongjie, Xie, Haoran, Wang, Fu Lee, Xu, Xiaoliang, Wang, Yuxiang
\Graph similarity computation is an essential task in many real-world graph-related applications such as retrieving the similar drugs given a query chemical compound or finding the user's potential friends from the social network database. Graph Edit Distance (GED) and Maximum Common Subgraphs (MCS) are the two commonly used domain-agnostic metrics to evaluate graph similarity in practice. Unfortunately, computing the exact GED is known to be a NP-hard problem. To solve this limitation, neural network based models have been proposed to approximate the calculations of GED/MCS. However, deep learning models are well-known ``black boxes'', thus the typically characteristic one-to-one node/subgraph alignment process in the classical computations of GED and MCS cannot be seen. Existing methods have paid attention to approximating the node/subgraph alignment (soft alignment), but the one-to-one node alignment (hard alignment) has not yet been solved. To fill this gap, in this paper we propose a novel interpretable neural node alignment model without relying on node alignment ground truth information. Firstly, the quadratic assignment problem in classical GED computation is relaxed to a linear alignment via embedding the features in the node embedding space. Secondly, a differentiable Gumbel-Sinkhorn module is proposed to unsupervised generate the optimal one-to-one node alignment matrix. Experimental results in real-world graph datasets demonstrate that our method outperforms the state-of-the-art methods in graph similarity computation and graph retrieval tasks, achieving up to 16\% reduction in the Mean Squared Error and up to 12\% improvement in the retrieval evaluation metrics, respectively.
Lost in UNet: Improving Infrared Small Target Detection by Underappreciated Local Features
Quan, Wuzhou, Zhao, Wei, Wang, Weiming, Xie, Haoran, Wang, Fu Lee, Wei, Mingqiang
Many targets are often very small in infrared images due to the long-distance imaging meachnism. UNet and its variants, as popular detection backbone networks, downsample the local features early and cause the irreversible loss of these local features, leading to both the missed and false detection of small targets in infrared images. We propose HintU, a novel network to recover the local features lost by various UNet-based methods for effective infrared small target detection. HintU has two key contributions. First, it introduces the "Hint" mechanism for the first time, i.e., leveraging the prior knowledge of target locations to highlight critical local features. Second, it improves the mainstream UNet-based architecture to preserve target pixels even after downsampling. HintU can shift the focus of various networks (e.g., vanilla UNet, UNet++, UIUNet, MiM+, and HCFNet) from the irrelevant background pixels to a more restricted area from the beginning. Experimental results on three datasets NUDT-SIRST, SIRSTv2 and IRSTD1K demonstrate that HintU enhances the performance of existing methods with only an additional 1.88 ms cost (on RTX Titan). Additionally, the explicit constraints of HintU enhance the generalization ability of UNet-based methods. Code is available at https://github.com/Wuzhou-Quan/HintU.
Parameter-Efficient Fine-Tuning Methods for Pretrained Language Models: A Critical Review and Assessment
Xu, Lingling, Xie, Haoran, Qin, Si-Zhao Joe, Tao, Xiaohui, Wang, Fu Lee
With the continuous growth in the number of parameters of transformer-based pretrained language models (PLMs), particularly the emergence of large language models (LLMs) with billions of parameters, many natural language processing (NLP) tasks have demonstrated remarkable success. However, the enormous size and computational demands of these models pose significant challenges for adapting them to specific downstream tasks, especially in environments with limited computational resources. Parameter Efficient Fine-Tuning (PEFT) offers an effective solution by reducing the number of fine-tuning parameters and memory usage while achieving comparable performance to full fine-tuning. The demands for fine-tuning PLMs, especially LLMs, have led to a surge in the development of PEFT methods, as depicted in Fig. 1. In this paper, we present a comprehensive and systematic review of PEFT methods for PLMs. We summarize these PEFT methods, discuss their applications, and outline future directions. Furthermore, we conduct experiments using several representative PEFT methods to better understand their effectiveness in parameter efficiency and memory efficiency. By offering insights into the latest advancements and practical applications, this survey serves as an invaluable resource for researchers and practitioners seeking to navigate the challenges and opportunities presented by PEFT in the context of PLMs.
Recurrent Attention Networks for Long-text Modeling
Li, Xianming, Li, Zongxi, Luo, Xiaotian, Xie, Haoran, Lee, Xing, Zhao, Yingbin, Wang, Fu Lee, Li, Qing
Self-attention-based models have achieved remarkable progress in short-text mining. However, the quadratic computational complexities restrict their application in long text processing. Prior works have adopted the chunking strategy to divide long documents into chunks and stack a self-attention backbone with the recurrent structure to extract semantic representation. Such an approach disables parallelization of the attention mechanism, significantly increasing the training cost and raising hardware requirements. Revisiting the self-attention mechanism and the recurrent structure, this paper proposes a novel long-document encoding model, Recurrent Attention Network (RAN), to enable the recurrent operation of self-attention. Combining the advantages from both sides, the well-designed RAN is capable of extracting global semantics in both token-level and document-level representations, making it inherently compatible with both sequential and classification tasks, respectively. Furthermore, RAN is computationally scalable as it supports parallelization on long document processing. Extensive experiments demonstrate the long-text encoding ability of the proposed RAN model on both classification and sequential tasks, showing its potential for a wide range of applications.
Cross-Domain Sentiment Classification via Topic-Related TrAdaBoost
Huang, Xingchang (Sun Yat-sen University) | Rao, Yanghui (Sun Yat-sen University) | Xie, Haoran (The Education University of Hong Kong) | Wong, Tak-Lam (The Education University of Hong Kong) | Wang, Fu Lee (Caritas Institute of Higher Education)
Cross-domain sentiment classification aims to tag sentiments for a target domain by labeled data from a source domain. Due to the difference between domains, the accuracy of a trained classifier may be very low. In this paper, we propose a boosting-based learning framework named TR-TrAdaBoost for cross-domain sentiment classification. We firstly explore the topic distribution of documents, and then combine it with the unigram TrAdaBoost. The topic distribution captures the domain information of documents, which is valuable for cross-domain sentiment classification. Experimental results indicate that TR-TrAdaBoost represents documents well and boost the performance and robustness of TrAdaBoost.