Not enough data to create a plot.
Try a different view from the menu above.
Wang, Fengyu
Application of machine learning algorithm in temperature field reconstruction
He, Qianyu, Sun, Huaiwei, Li, Yubo, You, Zhiwen, Zheng, Qiming, Huang, Yinghan, Zhu, Sipeng, Wang, Fengyu
This study focuses on the stratification patterns and dynamic evolution of reservoir water temperatures, aiming to estimate and reconstruct the temperature field using limited and noisy local measurement data. Due to complex measurement environments and technical limitations, obtaining complete temperature information for reservoirs is highly challenging. Therefore, accurately reconstructing the temperature field from a small number of local data points has become a critical scientific issue. To address this, the study employs Proper Orthogonal Decomposition (POD) and sparse representation methods to reconstruct the temperature field based on temperature data from a limited number of local measurement points. The results indicate that satisfactory reconstruction can be achieved when the number of POD basis functions is set to 2 and the number of measurement points is 10. Under different water intake depths, the reconstruction errors of both POD and sparse representation methods remain stable at around 0.15, fully validating the effectiveness of these methods in reconstructing the temperature field based on limited local temperature data. Additionally, the study further explores the distribution characteristics of reconstruction errors for POD and sparse representation methods under different water level intervals, analyzing the optimal measurement point layout scheme and potential limitations of the reconstruction methods in this case. This research not only effectively reduces measurement costs and computational resource consumption but also provides a new technical approach for reservoir temperature analysis, holding significant theoretical and practical importance.
Conifer: Improving Complex Constrained Instruction-Following Ability of Large Language Models
Sun, Haoran, Liu, Lixin, Li, Junjie, Wang, Fengyu, Dong, Baohua, Lin, Ran, Huang, Ruohui
The ability of large language models (LLMs) to follow instructions is crucial to real-world applications. Despite recent advances, several studies have highlighted that LLMs struggle when faced with challenging instructions, especially those that include complex constraints, hindering their effectiveness in various tasks. To address this challenge, we introduce Conifer, a novel instruction tuning dataset, designed to enhance LLMs to follow multi-level instructions with complex constraints. Utilizing GPT-4, we curate the dataset by a series of LLM-driven refinement processes to ensure high quality. We also propose a progressive learning scheme that emphasizes an easy-to-hard progression, and learning from process feedback. Models trained with Conifer exhibit remarkable improvements in instruction-following abilities, especially for instructions with complex constraints. On several instruction-following benchmarks, our 7B model outperforms the state-of-the-art open-source 7B models, even exceeds the performance of models 10 times larger on certain metrics. All the code and Conifer dataset are available at https://www.github.com/ConiferLM/Conifer.
Automatic Construction of Sememe Knowledge Bases via Dictionaries
Qi, Fanchao, Chen, Yangyi, Wang, Fengyu, Liu, Zhiyuan, Chen, Xiao, Sun, Maosong
A sememe is defined as the minimum semantic unit in linguistics. Sememe knowledge bases (SKBs), which comprise words annotated with sememes, enable sememes to be applied to natural language processing. So far a large body of research has showcased the unique advantages and effectiveness of SKBs in various tasks. However, most languages have no SKBs, and manual construction of SKBs is time-consuming and labor-intensive. To tackle this challenge, we propose a simple and fully automatic method of building an SKB via an existing dictionary. We use this method to build an English SKB and a French SKB, and conduct comprehensive evaluations from both intrinsic and extrinsic perspectives. Experimental results demonstrate that the automatically built English SKB is even superior to HowNet, the most widely used SKB that takes decades to build manually. And both the English and French SKBs can bring obvious performance enhancement in multiple downstream tasks. All the code and data of this paper (except the copyrighted dictionaries) can be obtained at https://github.com/thunlp/DictSKB.