Goto

Collaborating Authors

 Wang, Feng


Maximum Knowledge Orthogonality Reconstruction with Gradients in Federated Learning

arXiv.org Artificial Intelligence

Federated learning (FL) aims at keeping client data local to preserve privacy. Instead of gathering the data itself, the server only collects aggregated gradient updates from clients. Following the popularity of FL, there has been considerable amount of work, revealing the vulnerability of FL approaches by reconstructing the input data from gradient updates. Yet, most existing works assume an FL setting with unrealistically small batch size, and have poor image quality when the batch size is large. Other works modify the neural network architectures or parameters to the point of being suspicious, and thus, can be detected by clients. Moreover, most of them can only reconstruct one sample input from a large batch. To address these limitations, we propose a novel and completely analytical approach, referred to as the maximum knowledge orthogonality reconstruction (MKOR), to reconstruct clients' input data. Our proposed method reconstructs a mathematically proven high quality image from large batches. MKOR only requires the server to send secretly modified parameters to clients and can efficiently and inconspicuously reconstruct the input images from clients' gradient updates. We evaluate MKOR's performance on the MNIST, CIFAR-100, and ImageNet dataset and compare it with the state-of-the-art works. The results show that MKOR outperforms the existing approaches, and draws attention to a pressing need for further research on the privacy protection of FL so that comprehensive defense approaches can be developed.


Baichuan 2: Open Large-scale Language Models

arXiv.org Artificial Intelligence

Large language models (LLMs) have demonstrated remarkable performance on a variety of natural language tasks based on just a few examples of natural language instructions, reducing the need for extensive feature engineering. However, most powerful LLMs are closed-source or limited in their capability for languages other than English. In this technical report, we present Baichuan 2, a series of large-scale multilingual language models containing 7 billion and 13 billion parameters, trained from scratch, on 2.6 trillion tokens. Baichuan 2 matches or outperforms other open-source models of similar size on public benchmarks like MMLU, CMMLU, GSM8K, and HumanEval. Furthermore, Baichuan 2 excels in vertical domains such as medicine and law. We will release all pre-training model checkpoints to benefit the research community in better understanding the training dynamics of Baichuan 2.


A Conditional Denoising Diffusion Probabilistic Model for Radio Interferometric Image Reconstruction

arXiv.org Artificial Intelligence

In radio astronomy, signals from radio telescopes are transformed into images of observed celestial objects, or sources. However, these images, called dirty images, contain real sources as well as artifacts due to signal sparsity and other factors. Therefore, radio interferometric image reconstruction is performed on dirty images, aiming to produce clean images in which artifacts are reduced and real sources are recovered. So far, existing methods have limited success on recovering faint sources, preserving detailed structures, and eliminating artifacts. In this paper, we present VIC-DDPM, a Visibility and Image Conditioned Denoising Diffusion Probabilistic Model. Our main idea is to use both the original visibility data in the spectral domain and dirty images in the spatial domain to guide the image generation process with DDPM. This way, we can leverage DDPM to generate fine details and eliminate noise, while utilizing visibility data to separate signals from noise and retaining spatial information in dirty images. We have conducted experiments in comparison with both traditional methods and recent deep learning based approaches. Our results show that our method significantly improves the resulting images by reducing artifacts, preserving fine details, and recovering dim sources. This advancement further facilitates radio astronomical data analysis tasks on celestial phenomena.


FSD V2: Improving Fully Sparse 3D Object Detection with Virtual Voxels

arXiv.org Artificial Intelligence

LiDAR-based fully sparse architecture has garnered increasing attention. FSDv1 stands out as a representative work, achieving impressive efficacy and efficiency, albeit with intricate structures and handcrafted designs. In this paper, we present FSDv2, an evolution that aims to simplify the previous FSDv1 while eliminating the inductive bias introduced by its handcrafted instance-level representation, thus promoting better general applicability. To this end, we introduce the concept of \textbf{virtual voxels}, which takes over the clustering-based instance segmentation in FSDv1. Virtual voxels not only address the notorious issue of the Center Feature Missing problem in fully sparse detectors but also endow the framework with a more elegant and streamlined approach. Consequently, we develop a suite of components to complement the virtual voxel concept, including a virtual voxel encoder, a virtual voxel mixer, and a virtual voxel assignment strategy. Through empirical validation, we demonstrate that the virtual voxel mechanism is functionally similar to the handcrafted clustering in FSDv1 while being more general. We conduct experiments on three large-scale datasets: Waymo Open Dataset, Argoverse 2 dataset, and nuScenes dataset. Our results showcase state-of-the-art performance on all three datasets, highlighting the superiority of FSDv2 in long-range scenarios and its general applicability to achieve competitive performance across diverse scenarios. Moreover, we provide comprehensive experimental analysis to elucidate the workings of FSDv2. To foster reproducibility and further research, we have open-sourced FSDv2 at https://github.com/tusen-ai/SST.


Once Detected, Never Lost: Surpassing Human Performance in Offline LiDAR based 3D Object Detection

arXiv.org Artificial Intelligence

This paper aims for high-performance offline LiDAR-based 3D object detection. We first observe that experienced human annotators annotate objects from a track-centric perspective. They first label the objects with clear shapes in a track, and then leverage the temporal coherence to infer the annotations of obscure objects. Drawing inspiration from this, we propose a high-performance offline detector in a track-centric perspective instead of the conventional object-centric perspective. Our method features a bidirectional tracking module and a track-centric learning module. Such a design allows our detector to infer and refine a complete track once the object is detected at a certain moment. We refer to this characteristic as "onCe detecTed, neveR Lost" and name the proposed system CTRL. Extensive experiments demonstrate the remarkable performance of our method, surpassing the human-level annotating accuracy and the previous state-of-the-art methods in the highly competitive Waymo Open Dataset without model ensemble. The code will be made publicly available at https://github.com/tusen-ai/SST.


CoReFace: Sample-Guided Contrastive Regularization for Deep Face Recognition

arXiv.org Artificial Intelligence

The discriminability of feature representation is the key to open-set face recognition. Previous methods rely on the learnable weights of the classification layer that represent the identities. However, the evaluation process learns no identity representation and drops the classifier from training. This inconsistency could confuse the feature encoder in understanding the evaluation goal and hinder the effect of identity-based methods. To alleviate the above problem, we propose a novel approach namely Contrastive Regularization for Face recognition (CoReFace) to apply image-level regularization in feature representation learning. Specifically, we employ sample-guided contrastive learning to regularize the training with the image-image relationship directly, which is consistent with the evaluation process. To integrate contrastive learning into face recognition, we augment embeddings instead of images to avoid the image quality degradation. Then, we propose a novel contrastive loss for the representation distribution by incorporating an adaptive margin and a supervised contrastive mask to generate steady loss values and avoid the collision with the classification supervision signal. Finally, we discover and solve the semantically repetitive signal problem in contrastive learning by exploring new pair coupling protocols. Extensive experiments demonstrate the efficacy and efficiency of our CoReFace which is highly competitive with the state-of-the-art approaches.


Action Pick-up in Dynamic Action Space Reinforcement Learning

arXiv.org Artificial Intelligence

Most reinforcement learning algorithms are based on a key assumption that Markov decision processes (MDPs) are stationary. However, non-stationary MDPs with dynamic action space are omnipresent in real-world scenarios. Yet problems of dynamic action space reinforcement learning have been studied by many previous works, how to choose valuable actions from new and unseen actions to improve learning efficiency remains unaddressed. To tackle this problem, we propose an intelligent Action Pick-up (AP) algorithm to autonomously choose valuable actions that are most likely to boost performance from a set of new actions. In this paper, we first theoretically analyze and find that a prior optimal policy plays an important role in action pick-up by providing useful knowledge and experience. Then, we design two different AP methods: frequency-based global method and state clustering-based local method, based on the prior optimal policy. Finally, we evaluate the AP on two simulated but challenging environments where action spaces vary over time. Experimental results demonstrate that our proposed AP has advantages over baselines in learning efficiency.


DUET: A Tuning-Free Device-Cloud Collaborative Parameters Generation Framework for Efficient Device Model Generalization

arXiv.org Artificial Intelligence

Device Model Generalization (DMG) is a practical yet under-investigated research topic for on-device machine learning applications. It aims to improve the generalization ability of pre-trained models when deployed on resource-constrained devices, such as improving the performance of pre-trained cloud models on smart mobiles. While quite a lot of works have investigated the data distribution shift across clouds and devices, most of them focus on model fine-tuning on personalized data for individual devices to facilitate DMG. Despite their promising, these approaches require on-device re-training, which is practically infeasible due to the overfitting problem and high time delay when performing gradient calculation on real-time data. In this paper, we argue that the computational cost brought by fine-tuning can be rather unnecessary. We consequently present a novel perspective to improving DMG without increasing computational cost, i.e., device-specific parameter generation which directly maps data distribution to parameters. Specifically, we propose an efficient Device-cloUd collaborative parametErs generaTion framework DUET. DUET is deployed on a powerful cloud server that only requires the low cost of forwarding propagation and low time delay of data transmission between the device and the cloud. By doing so, DUET can rehearse the device-specific model weight realizations conditioned on the personalized real-time data for an individual device. Importantly, our DUET elegantly connects the cloud and device as a 'duet' collaboration, frees the DMG from fine-tuning, and enables a faster and more accurate DMG paradigm. We conduct an extensive experimental study of DUET on three public datasets, and the experimental results confirm our framework's effectiveness and generalisability for different DMG tasks.


Super Sparse 3D Object Detection

arXiv.org Artificial Intelligence

As the perception range of LiDAR expands, LiDAR-based 3D object detection contributes ever-increasingly to the long-range perception in autonomous driving. Mainstream 3D object detectors often build dense feature maps, where the cost is quadratic to the perception range, making them hardly scale up to the long-range settings. To enable efficient long-range detection, we first propose a fully sparse object detector termed FSD. FSD is built upon the general sparse voxel encoder and a novel sparse instance recognition (SIR) module. SIR groups the points into instances and applies highly-efficient instance-wise feature extraction. The instance-wise grouping sidesteps the issue of the center feature missing, which hinders the design of the fully sparse architecture. To further enjoy the benefit of fully sparse characteristic, we leverage temporal information to remove data redundancy and propose a super sparse detector named FSD++. FSD++ first generates residual points, which indicate the point changes between consecutive frames. The residual points, along with a few previous foreground points, form the super sparse input data, greatly reducing data redundancy and computational overhead. We comprehensively analyze our method on the large-scale Waymo Open Dataset, and state-of-the-art performance is reported. To showcase the superiority of our method in long-range detection, we also conduct experiments on Argoverse 2 Dataset, where the perception range ($200m$) is much larger than Waymo Open Dataset ($75m$). Code is open-sourced at https://github.com/tusen-ai/SST.


DART: Articulated Hand Model with Diverse Accessories and Rich Textures

arXiv.org Artificial Intelligence

Hand, the bearer of human productivity and intelligence, is receiving much attention due to the recent fever of digital twins. Among different hand morphable models, MANO has been widely used in vision and graphics community. However, MANO disregards textures and accessories, which largely limits its power to synthesize photorealistic hand data. In this paper, we extend MANO with Diverse Accessories and Rich Textures, namely DART. DART is composed of 50 daily 3D accessories which varies in appearance and shape, and 325 hand-crafted 2D texture maps covers different kinds of blemishes or make-ups. Unity GUI is also provided to generate synthetic hand data with user-defined settings, e.g., pose, camera, background, lighting, textures, and accessories. Finally, we release DARTset, which contains large-scale (800K), high-fidelity synthetic hand images, paired with perfect-aligned 3D labels. Experiments demonstrate its superiority in diversity. As a complement to existing hand datasets, DARTset boosts the generalization in both hand pose estimation and mesh recovery tasks. Raw ingredients (textures, accessories), Unity GUI, source code and DARTset are publicly available at dart2022.github.io