Goto

Collaborating Authors

 Wang, Fangxin


Data Augmentation for Supervised Graph Outlier Detection with Latent Diffusion Models

arXiv.org Artificial Intelligence

Graph outlier detection is a prominent task of research and application in the realm of graph neural networks. It identifies the outlier nodes that exhibit deviation from the majority in the graph. One of the fundamental challenges confronting supervised graph outlier detection algorithms is the prevalent issue of class imbalance, where the scarcity of outlier instances compared to normal instances often results in suboptimal performance. Conventional methods mitigate the imbalance by reweighting instances in the estimation of the loss function, assigning higher weights to outliers and lower weights to inliers. Nonetheless, these strategies are prone to overfitting and underfitting, respectively. Recently, generative models, especially diffusion models, have demonstrated their efficacy in synthesizing high-fidelity images. Despite their extraordinary generation quality, their potential in data augmentation for supervised graph outlier detection remains largely underexplored. To bridge this gap, we introduce GODM, a novel data augmentation for mitigating class imbalance in supervised Graph Outlier detection with latent Diffusion Models. Specifically, our proposed method consists of three key components: (1) Variantioanl Encoder maps the heterogeneous information inherent within the graph data into a unified latent space. (2) Graph Generator synthesizes graph data that are statistically similar to real outliers from latent space, and (3) Latent Diffusion Model learns the latent space distribution of real organic data by iterative denoising. Extensive experiments conducted on multiple datasets substantiate the effectiveness and efficiency of GODM. The case study further demonstrated the generation quality of our synthetic data. To foster accessibility and reproducibility, we encapsulate GODM into a plug-and-play package and release it at the Python Package Index (PyPI).


FedMS: Federated Learning with Mixture of Sparsely Activated Foundations Models

arXiv.org Artificial Intelligence

Foundation models have shown great success in natural language processing, computer vision, and multimodal tasks. FMs have a large number of model parameters, thus requiring a substantial amount of data to help optimize the model during the training. Federated learning has revolutionized machine learning by enabling collaborative learning from decentralized data while still preserving the data privacy of clients. Despite the great benefits foundation models can have empowered by federated learning, they face severe computation, communication, and statistical challenges. In this paper, we propose a novel two-stage federated learning algorithm called FedMS. A global expert is trained in the first stage and a local expert is trained in the second stage to provide better personalization. We construct a Mixture of Foundation Models (MoFM) with these two experts and design a gate neural network with an inserted gate adapter that joins the aggregation every communication round in the second stage. To further adapt to edge computing scenarios with limited computational resources, we design a novel Sparsely Activated LoRA (SAL) algorithm that freezes the pre-trained foundation model parameters inserts low-rank adaptation matrices into transformer blocks and activates them progressively during the training. We employ extensive experiments to verify the effectiveness of FedMS, results show that FedMS outperforms other SOTA baselines by up to 55.25% in default settings.


Equal Opportunity of Coverage in Fair Regression

arXiv.org Artificial Intelligence

We study fair machine learning (ML) under predictive uncertainty to enable reliable and trustworthy decision-making. The seminal work of ``equalized coverage'' proposed an uncertainty-aware fairness notion. However, it does not guarantee equal coverage rates across more fine-grained groups (e.g., low-income females) conditioning on the true label and is biased in the assessment of uncertainty. To tackle these limitations, we propose a new uncertainty-aware fairness -- Equal Opportunity of Coverage (EOC) -- that aims to achieve two properties: (1) coverage rates for different groups with similar outcomes are close, and (2) the coverage rate for the entire population remains at a predetermined level. Further, the prediction intervals should be narrow to be informative. We propose Binned Fair Quantile Regression (BFQR), a distribution-free post-processing method to improve EOC with reasonable width for any trained ML models. It first calibrates a hold-out set to bound deviation from EOC, then leverages conformal prediction to maintain EOC on a test set, meanwhile optimizing prediction interval width. Experimental results demonstrate the effectiveness of our method in improving EOC. Our code is publicly available at https://github.com/fangxin-wang/bfqr .


ILCAS: Imitation Learning-Based Configuration-Adaptive Streaming for Live Video Analytics with Cross-Camera Collaboration

arXiv.org Artificial Intelligence

The high-accuracy and resource-intensive deep neural networks (DNNs) have been widely adopted by live video analytics (VA), where camera videos are streamed over the network to resource-rich edge/cloud servers for DNN inference. Common video encoding configurations (e.g., resolution and frame rate) have been identified with significant impacts on striking the balance between bandwidth consumption and inference accuracy and therefore their adaption scheme has been a focus of optimization. However, previous profiling-based solutions suffer from high profiling cost, while existing deep reinforcement learning (DRL) based solutions may achieve poor performance due to the usage of fixed reward function for training the agent, which fails to craft the application goals in various scenarios. In this paper, we propose ILCAS, the first imitation learning (IL) based configuration-adaptive VA streaming system. Unlike DRL-based solutions, ILCAS trains the agent with demonstrations collected from the expert which is designed as an offline optimal policy that solves the configuration adaption problem through dynamic programming. To tackle the challenge of video content dynamics, ILCAS derives motion feature maps based on motion vectors which allow ILCAS to visually ``perceive'' video content changes. Moreover, ILCAS incorporates a cross-camera collaboration scheme to exploit the spatio-temporal correlations of cameras for more proper configuration selection. Extensive experiments confirm the superiority of ILCAS compared with state-of-the-art solutions, with 2-20.9% improvement of mean accuracy and 19.9-85.3% reduction of chunk upload lag.


Learning Cautiously in Federated Learning with Noisy and Heterogeneous Clients

arXiv.org Artificial Intelligence

Federated learning (FL) is a distributed framework for collaboratively training with privacy guarantees. In real-world scenarios, clients may have Non-IID data (local class imbalance) with poor annotation quality (label noise). The co-existence of label noise and class imbalance in FL's small local datasets renders conventional FL methods and noisy-label learning methods both ineffective. To address the challenges, we propose FedCNI without using an additional clean proxy dataset. It includes a noise-resilient local solver and a robust global aggregator. For the local solver, we design a more robust prototypical noise detector to distinguish noisy samples. Further to reduce the negative impact brought by the noisy samples, we devise a curriculum pseudo labeling method and a denoise Mixup training strategy. For the global aggregator, we propose a switching re-weighted aggregation method tailored to different learning periods. Extensive experiments demonstrate our method can substantially outperform state-of-the-art solutions in mix-heterogeneous FL environments.


Unimodal Training-Multimodal Prediction: Cross-modal Federated Learning with Hierarchical Aggregation

arXiv.org Artificial Intelligence

Multimodal learning has seen great success mining data features from multiple modalities with remarkable model performance improvement. Meanwhile, federated learning (FL) addresses the data sharing problem, enabling privacy-preserved collaborative training to provide sufficient precious data. Great potential, therefore, arises with the confluence of them, known as multimodal federated learning. However, limitation lies in the predominant approaches as they often assume that each local dataset records samples from all modalities. In this paper, we aim to bridge this gap by proposing an Unimodal Training - Multimodal Prediction (UTMP) framework under the context of multimodal federated learning. We design HA-Fedformer, a novel transformer-based model that empowers unimodal training with only a unimodal dataset at the client and multimodal testing by aggregating multiple clients' knowledge for better accuracy. The key advantages are twofold. Firstly, to alleviate the impact of data non-IID, we develop an uncertainty-aware aggregation method for the local encoders with layer-wise Markov Chain Monte Carlo sampling. Secondly, to overcome the challenge of unaligned language sequence, we implement a cross-modal decoder aggregation to capture the hidden signal correlation between decoders trained by data from different modalities. Our experiments on popular sentiment analysis benchmarks, CMU-MOSI and CMU-MOSEI, demonstrate that HA-Fedformer significantly outperforms state-of-the-art multimodal models under the UTMP federated learning frameworks, with 15%-20% improvement on most attributes.