Wang, Chengyu
EasyASR: A Distributed Machine Learning Platform for End-to-end Automatic Speech Recognition
Wang, Chengyu, Cheng, Mengli, Hu, Xu, Huang, Jun
We present EasyASR, a distributed machine learning platform for training and serving large-scale Automatic Speech Recognition (ASR) models, as well as collecting and processing audio data at scale. Our platform is built upon the Machine Learning Platform for AI of Alibaba Cloud. Its main functionality is to support efficient learning and inference for end-to-end ASR models on distributed GPU clusters. It allows users to learn ASR models with either pre-defined or user-customized network architectures via simple user interface. On EasyASR, we have produced state-of-the-art results over several public datasets for Mandarin speech recognition.
Knowledge-Empowered Representation Learning for Chinese Medical Reading Comprehension: Task, Model and Resources
Zhang, Taolin, Wang, Chengyu, Qiu, Minghui, Yang, Bite, He, Xiaofeng, Huang, Jun
Machine Reading Comprehension (MRC) aims to extract answers to questions given a passage. It has been widely studied recently, especially in open domains. However, few efforts have been made on closed-domain MRC, mainly due to the lack of large-scale training data. In this paper, we introduce a multi-target MRC task for the medical domain, whose goal is to predict answers to medical questions and the corresponding support sentences from medical information sources simultaneously, in order to ensure the high reliability of medical knowledge serving. A high-quality dataset is manually constructed for the purpose, named Multi-task Chinese Medical MRC dataset (CMedMRC), with detailed analysis conducted. We further propose the Chinese medical BERT model for the task (CMedBERT), which fuses medical knowledge into pre-trained language models by the dynamic fusion mechanism of heterogeneous features and the multi-task learning strategy. Experiments show that CMedBERT consistently outperforms strong baselines by fusing context-aware and knowledge-aware token representations.