Not enough data to create a plot.
Try a different view from the menu above.
Wang, Chengming
Construction and Applications of Billion-Scale Pre-Trained Multimodal Business Knowledge Graph
Deng, Shumin, Wang, Chengming, Li, Zhoubo, Zhang, Ningyu, Dai, Zelin, Chen, Hehong, Xiong, Feiyu, Yan, Ming, Chen, Qiang, Chen, Mosha, Chen, Jiaoyan, Pan, Jeff Z., Hooi, Bryan, Chen, Huajun
Business Knowledge Graphs (KGs) are important to many enterprises today, providing factual knowledge and structured data that steer many products and make them more intelligent. Despite their promising benefits, building business KG necessitates solving prohibitive issues of deficient structure and multiple modalities. In this paper, we advance the understanding of the practical challenges related to building KG in non-trivial real-world systems. We introduce the process of building an open business knowledge graph (OpenBG) derived from a well-known enterprise, Alibaba Group. Specifically, we define a core ontology to cover various abstract products and consumption demands, with fine-grained taxonomy and multimodal facts in deployed applications. OpenBG is an open business KG of unprecedented scale: 2.6 billion triples with more than 88 million entities covering over 1 million core classes/concepts and 2,681 types of relations. We release all the open resources (OpenBG benchmarks) derived from it for the community and report experimental results of KG-centric tasks. We also run up an online competition based on OpenBG benchmarks, and has attracted thousands of teams. We further pre-train OpenBG and apply it to many KG- enhanced downstream tasks in business scenarios, demonstrating the effectiveness of billion-scale multimodal knowledge for e-commerce. All the resources with codes have been released at \url{https://github.com/OpenBGBenchmark/OpenBG}.
Adaptive Constraint Partition based Optimization Framework for Large-scale Integer Linear Programming(Student Abstract)
Ye, Huigen, Wang, Hongyan, Xu, Hua, Wang, Chengming, Jiang, Yu
Integer programming problems (IPs) are challenging to be solved efficiently due to the NP-hardness, especially for large-scale IPs. To solve this type of IPs, Large neighborhood search (LNS) uses an initial feasible solution and iteratively improves it by searching a large neighborhood around the current solution. However, LNS easily steps into local optima and ignores the correlation between variables to be optimized, leading to compromised performance. This paper presents a general adaptive constraint partition-based optimization framework (ACP) for large-scale IPs that can efficiently use any existing optimization solver as a subroutine. Specifically, ACP first randomly partitions the constraints into blocks, where the number of blocks is adaptively adjusted to avoid local optima. Then, ACP uses a subroutine solver to optimize the decision variables in a randomly selected block of constraints to enhance the variable correlation. ACP is compared with LNS framework with different subroutine solvers on four IPs and a real-world IP. The experimental results demonstrate that in specified wall-clock time ACP shows better performance than SCIP and Gurobi.
Commonsense Knowledge Salience Evaluation with a Benchmark Dataset in E-commerce
Qu, Yincen, Zhang, Ningyu, Chen, Hui, Dai, Zelin, Xu, Zezhong, Wang, Chengming, Wang, Xiaoyu, Chen, Qiang, Chen, Huajun
In e-commerce, the salience of commonsense knowledge (CSK) is beneficial for widespread applications such as product search and recommendation. For example, when users search for ``running'' in e-commerce, they would like to find products highly related to running, such as ``running shoes'' rather than ``shoes''. Nevertheless, many existing CSK collections rank statements solely by confidence scores, and there is no information about which ones are salient from a human perspective. In this work, we define the task of supervised salience evaluation, where given a CSK triple, the model is required to learn whether the triple is salient or not. In addition to formulating the new task, we also release a new Benchmark dataset of Salience Evaluation in E-commerce (BSEE) and hope to promote related research on commonsense knowledge salience evaluation. We conduct experiments in the dataset with several representative baseline models. The experimental results show that salience evaluation is a challenging task where models perform poorly on our evaluation set. We further propose a simple but effective approach, PMI-tuning, which shows promise for solving this novel problem. Code is available in \url{https://github.com/OpenBGBenchmark/OpenBG-CSK.
Knowledge Association with Hyperbolic Knowledge Graph Embeddings
Sun, Zequn, Chen, Muhao, Hu, Wei, Wang, Chengming, Dai, Jian, Zhang, Wei
Capturing associations for knowledge graphs (KGs) through entity alignment, entity type inference and other related tasks benefits NLP applications with comprehensive knowledge representations. Recent related methods built on Euclidean embeddings are challenged by the hierarchical structures and different scales of KGs. They also depend on high embedding dimensions to realize enough expressiveness. Differently, we explore with low-dimensional hyperbolic embeddings for knowledge association. We propose a hyperbolic relational graph neural network for KG embedding and capture knowledge associations with a hyperbolic transformation. Extensive experiments on entity alignment and type inference demonstrate the effectiveness and efficiency of our method.