Not enough data to create a plot.
Try a different view from the menu above.
Wang, Chaoyue
One-shot Generative Domain Adaptation in 3D GANs
Li, Ziqiang, Wu, Yi, Wang, Chaoyue, Rui, Xue, Li, Bin
3D-aware image generation necessitates extensive training data to ensure stable training and mitigate the risk of overfitting. This paper first considers a novel task known as One-shot 3D Generative Domain Adaptation (GDA), aimed at transferring a pre-trained 3D generator from one domain to a new one, relying solely on a single reference image. One-shot 3D GDA is characterized by the pursuit of specific attributes, namely, high fidelity, large diversity, cross-domain consistency, and multi-view consistency. Within this paper, we introduce 3D-Adapter, the first one-shot 3D GDA method, for diverse and faithful generation. Our approach begins by judiciously selecting a restricted weight set for fine-tuning, and subsequently leverages four advanced loss functions to facilitate adaptation. An efficient progressive fine-tuning strategy is also implemented to enhance the adaptation process. The synergy of these three technological components empowers 3D-Adapter to achieve remarkable performance, substantiated both quantitatively and qualitatively, across all desired properties of 3D GDA. Furthermore, 3D-Adapter seamlessly extends its capabilities to zero-shot scenarios, and preserves the potential for crucial tasks such as interpolation, reconstruction, and editing within the latent space of the pre-trained generator. Code will be available at https://github.com/iceli1007/3D-Adapter.
Autoregressive Omni-Aware Outpainting for Open-Vocabulary 360-Degree Image Generation
Lu, Zhuqiang, Hu, Kun, Wang, Chaoyue, Bai, Lei, Wang, Zhiyong
A 360-degree (omni-directional) image provides an all-encompassing spherical view of a scene. Recently, there has been an increasing interest in synthesising 360-degree images from conventional narrow field of view (NFoV) images captured by digital cameras and smartphones, for providing immersive experiences in various scenarios such as virtual reality. Yet, existing methods typically fall short in synthesizing intricate visual details or ensure the generated images align consistently with user-provided prompts. In this study, autoregressive omni-aware generative network (AOG-Net) is proposed for 360-degree image generation by out-painting an incomplete 360-degree image progressively with NFoV and text guidances joinly or individually. This autoregressive scheme not only allows for deriving finer-grained and text-consistent patterns by dynamically generating and adjusting the process but also offers users greater flexibility to edit their conditions throughout the generation process. A global-local conditioning mechanism is devised to comprehensively formulate the outpainting guidance in each autoregressive step. Text guidances, omni-visual cues, NFoV inputs and omni-geometry are encoded and further formulated with cross-attention based transformers into a global stream and a local stream into a conditioned generative backbone model. As AOG-Net is compatible to leverage large-scale models for the conditional encoder and the generative prior, it enables the generation to use extensive open-vocabulary text guidances. Comprehensive experiments on two commonly used 360-degree image datasets for both indoor and outdoor settings demonstrate the state-of-the-art performance of our proposed method. Our code will be made publicly available.
Null-text Guidance in Diffusion Models is Secretly a Cartoon-style Creator
Zhao, Jing, Zheng, Heliang, Wang, Chaoyue, Lan, Long, Huang, Wanrong, Yang, Wenjing
Classifier-free guidance is an effective sampling technique in diffusion models that has been widely adopted. The main idea is to extrapolate the model in the direction of text guidance and away from null-text guidance. In this paper, we demonstrate that null-text guidance in diffusion models is secretly a cartoon-style creator, i.e., the generated images can be efficiently transformed into cartoons by simply perturbing the null-text guidance. Specifically, we proposed two disturbance methods, i.e., Rollback disturbance (Back-D) and Image disturbance (Image-D), to construct misalignment between the noisy images used for predicting null-text guidance and text guidance (subsequently referred to as \textbf{null-text noisy image} and \textbf{text noisy image} respectively) in the sampling process. Back-D achieves cartoonization by altering the noise level of null-text noisy image via replacing $x_t$ with $x_{t+\Delta t}$. Image-D, alternatively, produces high-fidelity, diverse cartoons by defining $x_t$ as a clean input image, which further improves the incorporation of finer image details. Through comprehensive experiments, we delved into the principle of noise disturbing for null-text and uncovered that the efficacy of disturbance depends on the correlation between the null-text noisy image and the source image. Moreover, our proposed techniques, which can generate cartoon images and cartoonize specific ones, are training-free and easily integrated as a plug-and-play component in any classifier-free guided diffusion model. Project page is available at \url{https://nulltextforcartoon.github.io/}.
MagicFusion: Boosting Text-to-Image Generation Performance by Fusing Diffusion Models
Zhao, Jing, Zheng, Heliang, Wang, Chaoyue, Lan, Long, Yang, Wenjing
The advent of open-source AI communities has produced a cornucopia of powerful text-guided diffusion models that are trained on various datasets. While few explorations have been conducted on ensembling such models to combine their strengths. In this work, we propose a simple yet effective method called Saliency-aware Noise Blending (SNB) that can empower the fused text-guided diffusion models to achieve more controllable generation. Specifically, we experimentally find that the responses of classifier-free guidance are highly related to the saliency of generated images. Thus we propose to trust different models in their areas of expertise by blending the predicted noises of two diffusion models in a saliency-aware manner. SNB is training-free and can be completed within a DDIM sampling process. Additionally, it can automatically align the semantics of two noise spaces without requiring additional annotations such as masks. Extensive experiments show the impressive effectiveness of SNB in various applications. Project page is available at https://magicfusion.github.io/.
OmniForce: On Human-Centered, Large Model Empowered and Cloud-Edge Collaborative AutoML System
Xue, Chao, Liu, Wei, Xie, Shuai, Wang, Zhenfang, Li, Jiaxing, Peng, Xuyang, Ding, Liang, Zhao, Shanshan, Cao, Qiong, Yang, Yibo, He, Fengxiang, Cai, Bohua, Bian, Rongcheng, Zhao, Yiyan, Zheng, Heliang, Liu, Xiangyang, Liu, Dongkai, Liu, Daqing, Shen, Li, Li, Chang, Zhang, Shijin, Zhang, Yukang, Chen, Guanpu, Chen, Shixiang, Zhan, Yibing, Zhang, Jing, Wang, Chaoyue, Tao, Dacheng
Automated machine learning (AutoML) seeks to build ML models with minimal human effort. While considerable research has been conducted in the area of AutoML in general, aiming to take humans out of the loop when building artificial intelligence (AI) applications, scant literature has focused on how AutoML works well in open-environment scenarios such as the process of training and updating large models, industrial supply chains or the industrial metaverse, where people often face open-loop problems during the search process: they must continuously collect data, update data and models, satisfy the requirements of the development and deployment environment, support massive devices, modify evaluation metrics, etc. Addressing the open-environment issue with pure data-driven approaches requires considerable data, computing resources, and effort from dedicated data engineers, making current AutoML systems and platforms inefficient and computationally intractable. Human-computer interaction is a practical and feasible way to tackle the problem of open-environment AI. In this paper, we introduce OmniForce, a human-centered AutoML (HAML) system that yields both human-assisted ML and ML-assisted human techniques, to put an AutoML system into practice and build adaptive AI in open-environment scenarios. Specifically, we present OmniForce in terms of ML version management; pipeline-driven development and deployment collaborations; a flexible search strategy framework; and widely provisioned and crowdsourced application algorithms, including large models. Furthermore, the (large) models constructed by OmniForce can be automatically turned into remote services in a few minutes; this process is dubbed model as a service (MaaS). Experimental results obtained in multiple search spaces and real-world use cases demonstrate the efficacy and efficiency of OmniForce.
Cocktail: Mixing Multi-Modality Controls for Text-Conditional Image Generation
Hu, Minghui, Zheng, Jianbin, Liu, Daqing, Zheng, Chuanxia, Wang, Chaoyue, Tao, Dacheng, Cham, Tat-Jen
Text-conditional diffusion models are able to generate high-fidelity images with diverse contents. However, linguistic representations frequently exhibit ambiguous descriptions of the envisioned objective imagery, requiring the incorporation of additional control signals to bolster the efficacy of text-guided diffusion models. In this work, we propose Cocktail, a pipeline to mix various modalities into one embedding, amalgamated with a generalized ControlNet (gControlNet), a controllable normalisation (ControlNorm), and a spatial guidance sampling method, to actualize multi-modal and spatially-refined control for text-conditional diffusion models. Specifically, we introduce a hyper-network gControlNet, dedicated to the alignment and infusion of the control signals from disparate modalities into the pre-trained diffusion model. gControlNet is capable of accepting flexible modality signals, encompassing the simultaneous reception of any combination of modality signals, or the supplementary fusion of multiple modality signals. The control signals are then fused and injected into the backbone model according to our proposed ControlNorm. Furthermore, our advanced spatial guidance sampling methodology proficiently incorporates the control signal into the designated region, thereby circumventing the manifestation of undesired objects within the generated image. We demonstrate the results of our method in controlling various modalities, proving high-quality synthesis and fidelity to multiple external signals.
Visual Semantics Allow for Textual Reasoning Better in Scene Text Recognition
He, Yue, Chen, Chen, Zhang, Jing, Liu, Juhua, He, Fengxiang, Wang, Chaoyue, Du, Bo
Existing Scene Text Recognition (STR) methods typically use a language model to optimize the joint probability of the 1D character sequence predicted by a visual recognition (VR) model, which ignore the 2D spatial context of visual semantics within and between character instances, making them not generalize well to arbitrary shape scene text. To address this issue, we make the first attempt to perform textual reasoning based on visual semantics in this paper. Technically, given the character segmentation maps predicted by a VR model, we construct a subgraph for each instance, where nodes represent the pixels in it and edges are added between nodes based on their spatial similarity. Then, these subgraphs are sequentially connected by their root nodes and merged into a complete graph. Based on this graph, we devise a graph convolutional network for textual reasoning (GTR) by supervising it with a cross-entropy loss. GTR can be easily plugged in representative STR models to improve their performance owing to better textual reasoning. Specifically, we construct our model, namely S-GTR, by paralleling GTR to the language model in a segmentation-based STR baseline, which can effectively exploit the visual-linguistic complementarity via mutual learning. S-GTR sets new state-of-the-art on six challenging STR benchmarks and generalizes well to multi-linguistic datasets. Code is available at https://github.com/adeline-cs/GTR.
TAG: Toward Accurate Social Media Content Tagging with a Concept Graph
Yang, Jiuding, Guo, Weidong, Liu, Bang, Yu, Yakun, Wang, Chaoyue, Luo, Jinwen, Kong, Linglong, Niu, Di, Wen, Zhen
Although conceptualization has been widely studied in semantics and knowledge representation, it is still challenging to find the most accurate concept phrases to characterize the main idea of a text snippet on the fast-growing social media. This is partly attributed to the fact that most knowledge bases contain general terms of the world, such as trees and cars, which do not have the defining power or are not interesting enough to social media app users. Another reason is that the intricacy of natural language allows the use of tense, negation and grammar to change the logic or emphasis of language, thus conveying completely different meanings. In this paper, we present TAG, a high-quality concept matching dataset consisting of 10,000 labeled pairs of fine-grained concepts and web-styled natural language sentences, mined from the open-domain social media. The concepts we consider represent the trending interests of online users. Associated with TAG is a concept graph of these fine-grained concepts and entities to provide the structural context information. We evaluate a wide range of popular neural text matching models as well as pre-trained language models on TAG, and point out their insufficiency to tag social media content with the most appropriate concept. We further propose a novel graph-graph matching method that demonstrates superior abstraction and generalization performance by better utilizing both the structural context in the concept graph and logic interactions between semantic units in the sentence via syntactic dependency parsing. We open-source both the TAG dataset and the proposed methods to facilitate further research.
Evolutionary Generative Adversarial Networks
Wang, Chaoyue, Xu, Chang, Yao, Xin, Tao, Dacheng
Generative adversarial networks (GAN) have been effective for learning generative models for real-world data. However, existing GANs (GAN and its variants) tend to suffer from training problems such as instability and mode collapse. In this paper, we propose a novel GAN framework called evolutionary generative adversarial networks (E-GAN) for stable GAN training and improved generative performance. Unlike existing GANs, which employ a pre-defined adversarial objective function alternately training a generator and a discriminator, we utilize different adversarial training objectives as mutation operations and evolve a population of generators to adapt to the environment (i.e., the discriminator). We also utilize an evaluation mechanism to measure the quality and diversity of generated samples, such that only well-performing generator(s) are preserved and used for further training. In this way, E-GAN overcomes the limitations of an individual adversarial training objective and always preserves the best offspring, contributing to progress in and the success of GANs. Experiments on several datasets demonstrate that E-GAN achieves convincing generative performance and reduces the training problems inherent in existing GANs.