Plotting

 Wang, Changmiao


TMI-CLNet: Triple-Modal Interaction Network for Chronic Liver Disease Prognosis From Imaging, Clinical, and Radiomic Data Fusion

arXiv.org Artificial Intelligence

Chronic liver disease represents a significant health challenge worldwide and accurate prognostic evaluations are essential for personalized treatment plans. Recent evidence suggests that integrating multimodal data, such as computed tomography imaging, radiomic features, and clinical information, can provide more comprehensive prognostic information. However, modalities have an inherent heterogeneity, and incorporating additional modalities may exacerbate the challenges of heterogeneous data fusion. Moreover, existing multimodal fusion methods often struggle to adapt to richer medical modalities, making it difficult to capture inter-modal relationships. To overcome these limitations, We present the Triple-Modal Interaction Chronic Liver Network (TMI-CLNet). Specifically, we develop an Intra-Modality Aggregation module and a Triple-Modal Cross-Attention Fusion module, which are designed to eliminate intra-modality redundancy and extract cross-modal information, respectively. Furthermore, we design a Triple-Modal Feature Fusion loss function to align feature representations across modalities. Extensive experiments on the liver prognosis dataset demonstrate that our approach significantly outperforms existing state-of-the-art unimodal models and other multi-modal techniques. Our code is available at https://github.com/Mysterwll/liver.git.


XLSTM-HVED: Cross-Modal Brain Tumor Segmentation and MRI Reconstruction Method Using Vision XLSTM and Heteromodal Variational Encoder-Decoder

arXiv.org Artificial Intelligence

Neurogliomas are among the most aggressive forms of cancer, presenting considerable challenges in both treatment and monitoring due to their unpredictable biological behavior. Magnetic resonance imaging (MRI) is currently the preferred method for diagnosing and monitoring gliomas. However, the lack of specific imaging techniques often compromises the accuracy of tumor segmentation during the imaging process. To address this issue, we introduce the XLSTM-HVED model. This model integrates a hetero-modal encoder-decoder framework with the Vision XLSTM module to reconstruct missing MRI modalities. By deeply fusing spatial and temporal features, it enhances tumor segmentation performance. The key innovation of our approach is the Self-Attention Variational Encoder (SAVE) module, which improves the integration of modal features. Additionally, it optimizes the interaction of features between segmentation and reconstruction tasks through the Squeeze-Fusion-Excitation Cross Awareness (SFECA) module. Our experiments using the BraTS 2024 dataset demonstrate that our model significantly outperforms existing advanced methods in handling cases where modalities are missing. Our source code is available at https://github.com/Quanato607/XLSTM-HVED.


stEnTrans: Transformer-based deep learning for spatial transcriptomics enhancement

arXiv.org Artificial Intelligence

The spatial location of cells within tissues and organs is crucial for the manifestation of their specific functions.Spatial transcriptomics technology enables comprehensive measurement of the gene expression patterns in tissues while retaining spatial information. However, current popular spatial transcriptomics techniques either have shallow sequencing depth or low resolution. We present stEnTrans, a deep learning method based on Transformer architecture that provides comprehensive predictions for gene expression in unmeasured areas or unexpectedly lost areas and enhances gene expression in original and inputed spots. Utilizing a self-supervised learning approach, stEnTrans establishes proxy tasks on gene expression profile without requiring additional data, mining intrinsic features of the tissues as supervisory information. We evaluate stEnTrans on six datasets and the results indicate superior performance in enhancing spots resolution and predicting gene expression in unmeasured areas compared to other deep learning and traditional interpolation methods. Additionally, Our method also can help the discovery of spatial patterns in Spatial Transcriptomics and enrich to more biologically significant pathways.


Multimodal contrastive learning for spatial gene expression prediction using histology images

arXiv.org Artificial Intelligence

In recent years, the advent of spatial transcriptomics (ST) technology has unlocked unprecedented opportunities for delving into the complexities of gene expression patterns within intricate biological systems. Despite its transformative potential, the prohibitive cost of ST technology remains a significant barrier to its widespread adoption in large-scale studies. An alternative, more cost-effective strategy involves employing artificial intelligence to predict gene expression levels using readily accessible whole-slide images (WSIs) stained with Hematoxylin and Eosin (H\&E). However, existing methods have yet to fully capitalize on multimodal information provided by H&E images and ST data with spatial location. In this paper, we propose \textbf{mclSTExp}, a multimodal contrastive learning with Transformer and Densenet-121 encoder for Spatial Transcriptomics Expression prediction. We conceptualize each spot as a "word", integrating its intrinsic features with spatial context through the self-attention mechanism of a Transformer encoder. This integration is further enriched by incorporating image features via contrastive learning, thereby enhancing the predictive capability of our model. Our extensive evaluation of \textbf{mclSTExp} on two breast cancer datasets and a skin squamous cell carcinoma dataset demonstrates its superior performance in predicting spatial gene expression. Moreover, mclSTExp has shown promise in interpreting cancer-specific overexpressed genes, elucidating immune-related genes, and identifying specialized spatial domains annotated by pathologists. Our source code is available at https://github.com/shizhiceng/mclSTExp.


SCKansformer: Fine-Grained Classification of Bone Marrow Cells via Kansformer Backbone and Hierarchical Attention Mechanisms

arXiv.org Artificial Intelligence

The incidence and mortality rates of malignant tumors, such as acute leukemia, have risen significantly. Clinically, hospitals rely on cytological examination of peripheral blood and bone marrow smears to diagnose malignant tumors, with accurate blood cell counting being crucial. Existing automated methods face challenges such as low feature expression capability, poor interpretability, and redundant feature extraction when processing high-dimensional microimage data. We propose a novel fine-grained classification model, SCKansformer, for bone marrow blood cells, which addresses these challenges and enhances classification accuracy and efficiency. The model integrates the Kansformer Encoder, SCConv Encoder, and Global-Local Attention Encoder. The Kansformer Encoder replaces the traditional MLP layer with the KAN, improving nonlinear feature representation and interpretability. The SCConv Encoder, with its Spatial and Channel Reconstruction Units, enhances feature representation and reduces redundancy. The Global-Local Attention Encoder combines Multi-head Self-Attention with a Local Part module to capture both global and local features. We validated our model using the Bone Marrow Blood Cell Fine-Grained Classification Dataset (BMCD-FGCD), comprising over 10,000 samples and nearly 40 classifications, developed with a partner hospital. Comparative experiments on our private dataset, as well as the publicly available PBC and ALL-IDB datasets, demonstrate that SCKansformer outperforms both typical and advanced microcell classification methods across all datasets. Our source code and private BMCD-FGCD dataset are available at https://github.com/JustlfC03/SCKansformer.


stMCDI: Masked Conditional Diffusion Model with Graph Neural Network for Spatial Transcriptomics Data Imputation

arXiv.org Artificial Intelligence

Spatially resolved transcriptomics represents a significant advancement in single-cell analysis by offering both gene expression data and their corresponding physical locations. However, this high degree of spatial resolution entails a drawback, as the resulting spatial transcriptomic data at the cellular level is notably plagued by a high incidence of missing values. Furthermore, most existing imputation methods either overlook the spatial information between spots or compromise the overall gene expression data distribution. To address these challenges, our primary focus is on effectively utilizing the spatial location information within spatial transcriptomic data to impute missing values, while preserving the overall data distribution. We introduce \textbf{stMCDI}, a novel conditional diffusion model for spatial transcriptomics data imputation, which employs a denoising network trained using randomly masked data portions as guidance, with the unmasked data serving as conditions. Additionally, it utilizes a GNN encoder to integrate the spatial position information, thereby enhancing model performance. The results obtained from spatial transcriptomics datasets elucidate the performance of our methods relative to existing approaches.


Accurate Leukocyte Detection Based on Deformable-DETR and Multi-Level Feature Fusion for Aiding Diagnosis of Blood Diseases

arXiv.org Artificial Intelligence

In standard hospital blood tests, the traditional process requires doctors to manually isolate leukocytes from microscopic images of patients' blood using microscopes. These isolated leukocytes are then categorized via automatic leukocyte classifiers to determine the proportion and volume of different types of leukocytes present in the blood samples, aiding disease diagnosis. This methodology is not only time-consuming and labor-intensive, but it also has a high propensity for errors due to factors such as image quality and environmental conditions, which could potentially lead to incorrect subsequent classifications and misdiagnosis. To address these issues, this paper proposes an innovative method of leukocyte detection: the Multi-level Feature Fusion and Deformable Self-attention DETR (MFDS-DETR). To tackle the issue of leukocyte scale disparity, we designed the High-level Screening-feature Fusion Pyramid (HS-FPN), enabling multi-level fusion. This model uses high-level features as weights to filter low-level feature information via a channel attention module and then merges the screened information with the high-level features, thus enhancing the model's feature expression capability. Further, we address the issue of leukocyte feature scarcity by incorporating a multi-scale deformable self-attention module in the encoder and using the self-attention and cross-deformable attention mechanisms in the decoder, which aids in the extraction of the global features of the leukocyte feature maps. The effectiveness, superiority, and generalizability of the proposed MFDS-DETR method are confirmed through comparisons with other cutting-edge leukocyte detection models using the private WBCDD, public LISC and BCCD datasets. Our source code and private WBCCD dataset are available at https://github.com/JustlfC03/MFDS-DETR.


SCUNet++: Swin-UNet and CNN Bottleneck Hybrid Architecture with Multi-Fusion Dense Skip Connection for Pulmonary Embolism CT Image Segmentation

arXiv.org Artificial Intelligence

Pulmonary embolism (PE) is a prevalent lung disease that can lead to right ventricular hypertrophy and failure in severe cases, ranking second in severity only to myocardial infarction and sudden death. Pulmonary artery CT angiography (CTPA) is a widely used diagnostic method for PE. However, PE detection presents challenges in clinical practice due to limitations in imaging technology. CTPA can produce noises similar to PE, making confirmation of its presence time-consuming and prone to overdiagnosis. Nevertheless, the traditional segmentation method of PE can not fully consider the hierarchical structure of features, local and global spatial features of PE CT images. In this paper, we propose an automatic PE segmentation method called SCUNet++ (Swin Conv UNet++). This method incorporates multiple fusion dense skip connections between the encoder and decoder, utilizing the Swin Transformer as the encoder. And fuses features of different scales in the decoder subnetwork to compensate for spatial information loss caused by the inevitable downsampling in Swin-UNet or other state-of-the-art methods, effectively solving the above problem. We provide a theoretical analysis of this method in detail and validate it on publicly available PE CT image datasets FUMPE and CAD-PE. The experimental results indicate that our proposed method achieved a Dice similarity coefficient (DSC) of 83.47% and a Hausdorff distance 95th percentile (HD95) of 3.83 on the FUMPE dataset, as well as a DSC of 83.42% and an HD95 of 5.10 on the CAD-PE dataset. These findings demonstrate that our method exhibits strong performance in PE segmentation tasks, potentially enhancing the accuracy of automatic segmentation of PE and providing a powerful diagnostic tool for clinical physicians. Our source code and new FUMPE dataset are available at https://github.com/JustlfC03/SCUNet-plusplus.