Goto

Collaborating Authors

 Wang, Changhan


MuAViC: A Multilingual Audio-Visual Corpus for Robust Speech Recognition and Robust Speech-to-Text Translation

arXiv.org Artificial Intelligence

We introduce MuAViC, a multilingual audio-visual corpus for robust speech recognition and robust speech-to-text translation providing 1200 hours of audio-visual speech in 9 languages. It is fully transcribed and covers 6 English-to-X translation as well as 6 X-to-English translation directions. To the best of our knowledge, this is the first open benchmark for audio-visual speech-to-text translation and the largest open benchmark for multilingual audio-visual speech recognition. Our baseline results show that MuAViC is effective for building noise-robust speech recognition and translation models. We make the corpus available at https://github.com/facebookresearch/muavic.


A Holistic Cascade System, benchmark, and Human Evaluation Protocol for Expressive Speech-to-Speech Translation

arXiv.org Artificial Intelligence

Expressive speech-to-speech translation (S2ST) aims to transfer prosodic attributes of source speech to target speech while maintaining translation accuracy. Existing research in expressive S2ST is limited, typically focusing on a single expressivity aspect at a time. Likewise, this research area lacks standard evaluation protocols and well-curated benchmark datasets. In this work, we propose a holistic cascade system for expressive S2ST, combining multiple prosody transfer techniques previously considered only in isolation. We curate a benchmark expressivity test set in the TV series domain and explored a second dataset in the audiobook domain. Finally, we present a human evaluation protocol to assess multiple expressive dimensions across speech pairs. Experimental results indicate that bi-lingual annotators can assess the quality of expressive preservation in S2ST systems, and the holistic modeling approach outperforms single-aspect systems. Audio samples can be accessed through our demo webpage: https://facebookresearch.github.io/speech_translation/cascade_expressive_s2st.


Introducing Semantics into Speech Encoders

arXiv.org Artificial Intelligence

Recent studies find existing self-supervised speech encoders contain primarily acoustic rather than semantic information. As a result, pipelined supervised automatic speech recognition (ASR) to large language model (LLM) systems achieve state-of-the-art results on semantic spoken language tasks by utilizing rich semantic representations from the LLM. These systems come at the cost of labeled audio transcriptions, which is expensive and time-consuming to obtain. We propose a task-agnostic unsupervised way of incorporating semantic information from LLMs into self-supervised speech encoders without labeled audio transcriptions. By introducing semantics, we improve existing speech encoder spoken language understanding performance by over 10\% on intent classification, with modest gains in named entity resolution and slot filling, and spoken question answering FF1 score by over 2\%. Our unsupervised approach achieves similar performance as supervised methods trained on over 100 hours of labeled audio transcripts, demonstrating the feasibility of unsupervised semantic augmentations to existing speech encoders.


Speech-to-Speech Translation For A Real-world Unwritten Language

arXiv.org Artificial Intelligence

We study speech-to-speech translation (S2ST) that translates speech from one language into another language and focuses on building systems to support languages without standard text writing systems. We use English-Taiwanese Hokkien as a case study, and present an end-to-end solution from training data collection, modeling choices to benchmark dataset release. First, we present efforts on creating human annotated data, automatically mining data from large unlabeled speech datasets, and adopting pseudo-labeling to produce weakly supervised data. On the modeling, we take advantage of recent advances in applying self-supervised discrete representations as target for prediction in S2ST and show the effectiveness of leveraging additional text supervision from Mandarin, a language similar to Hokkien, in model training. Finally, we release an S2ST benchmark set to facilitate future research in this field. The demo can be found at https://huggingface.co/spaces/facebook/Hokkien_Translation .