Plotting

 Wang, Bohan


ALO-VC: Any-to-any Low-latency One-shot Voice Conversion

arXiv.org Artificial Intelligence

This paper presents ALO-VC, a non-parallel low-latency one-shot phonetic posteriorgrams (PPGs) based voice conversion method. ALO-VC enables any-to-any voice conversion using only one utterance from the target speaker, with only 47.5 ms future look-ahead. The proposed hybrid signal processing and machine learning pipeline combines a pre-trained speaker encoder, a pitch predictor to predict the converted speech's prosody, and positional encoding to convey the phoneme's location information. We introduce two system versions: ALO-VC-R, which uses a pre-trained d-vector speaker encoder, and ALO-VC-E, which improves performance using the ECAPA-TDNN speaker encoder. The experimental results demonstrate both ALO-VC-R and ALO-VC-E can achieve comparable performance to non-causal baseline systems on the VCTK dataset and two out-of-domain datasets. Furthermore, both proposed systems can be deployed on a single CPU core with 55 ms latency and 0.78 real-time factor. Our demo is available online.


DiGress: Discrete Denoising diffusion for graph generation

arXiv.org Artificial Intelligence

This work introduces DiGress, a discrete denoising diffusion model for generating graphs with categorical node and edge attributes. A graph transformer network is trained to revert this process, simplifying the problem of distribution learning over graphs into a sequence of node and edge classification tasks. We further improve sample quality by introducing a Markovian noise model that preserves the marginal distribution of node and edge types during diffusion, and by incorporating auxiliary graph-theoretic features. A procedure for conditioning the generation on graph-level features is also proposed. DiGress achieves state-of-theart performance on molecular and non-molecular datasets, with up to 3x validity improvement on a planar graph dataset. It is also the first model to scale to the large GuacaMol dataset containing 1.3M drug-like molecules without the use of molecule-specific representations. At a high-level, these models are trained to denoise diffusion trajectories, and produce new samples by sampling noise and recursively denoising it. Diffusion models have been used successfully in a variety of settings, outperforming all other methods on image and video (Dhariwal & Nichol, 2021; Ho et al., 2022). These successes raise hope for building powerful models for graph generation, a task with diverse applications such as molecule design (Liu et al., 2018), traffic modeling (Yu & Gu, 2019), and code completion (Brockschmidt et al., 2019). However, generating graphs remains challenging due to their unordered nature and sparsity properties.


Regularization of polynomial networks for image recognition

arXiv.org Artificial Intelligence

Deep Neural Networks (DNNs) have obtained impressive performance across tasks, however they still remain as black boxes, e.g., hard to theoretically analyze. At the same time, Polynomial Networks (PNs) have emerged as an alternative method with a promising performance and improved interpretability but have yet to reach the performance of the powerful DNN baselines. In this work, we aim to close this performance gap. We introduce a class of PNs, which are able to reach the performance of ResNet across a range of six benchmarks. We demonstrate that strong regularization is critical and conduct an extensive study of the exact regularization schemes required to match performance. To further motivate the regularization schemes, we introduce D-PolyNets that achieve a higher-degree of expansion than previously proposed polynomial networks. D-PolyNets are more parameter-efficient while achieving a similar performance as other polynomial networks. We expect that our new models can lead to an understanding of the role of elementwise activation functions (which are no longer required for training PNs). The source code is available at https://github.com/grigorisg9gr/regularized_polynomials.


Optimizing Information-theoretical Generalization Bounds via Anisotropic Noise in SGLD

arXiv.org Machine Learning

Recently, the information-theoretical framework has been proven to be able to obtain non-vacuous generalization bounds for large models trained by Stochastic Gradient Langevin Dynamics (SGLD) with isotropic noise. In this paper, we optimize the information-theoretical generalization bound by manipulating the noise structure in SGLD. We prove that with constraint to guarantee low empirical risk, the optimal noise covariance is the square root of the expected gradient covariance if both the prior and the posterior are jointly optimized. This validates that the optimal noise is quite close to the empirical gradient covariance. Technically, we develop a new information-theoretical bound that enables such an optimization analysis. We then apply matrix analysis to derive the form of optimal noise covariance. Presented constraint and results are validated by the empirical observations.


Creating Training Sets via Weak Indirect Supervision

arXiv.org Machine Learning

Creating labeled training sets has become one of the major roadblocks in machine learning. To address this, recent Weak Supervision (WS) frameworks synthesize training labels from multiple potentially noisy supervision sources. However, existing frameworks are restricted to supervision sources that share the same output space as the target task. To extend the scope of usable sources, we formulate Weak Indirect Supervision (WIS), a new research problem for automatically synthesizing training labels based on indirect supervision sources that have different output label spaces. To overcome the challenge of mismatched output spaces, we develop a probabilistic modeling approach, PLRM, which uses user-provided label relations to model and leverage indirect supervision sources. Moreover, we provide a theoretically-principled test of the distinguishability of PLRM for unseen labels, along with an generalization bound. On both image and text classification tasks as well as an industrial advertising application, we demonstrate the advantages of PLRM by outperforming baselines by a margin of 2%-9%.


Robustness, Privacy, and Generalization of Adversarial Training

arXiv.org Machine Learning

Adversarial training can considerably robustify deep neural networks to resist adversarial attacks. However, some works suggested that adversarial training might comprise the privacy-preserving and generalization abilities. This paper establishes and quantifies the privacy-robustness trade-off and generalization-robustness trade-off in adversarial training from both theoretical and empirical aspects. We first define a notion, {\it robustified intensity} to measure the robustness of an adversarial training algorithm. This measure can be approximate empirically by an asymptotically consistent empirical estimator, {\it empirical robustified intensity}. Based on the robustified intensity, we prove that (1) adversarial training is $(\varepsilon, \delta)$-differentially private, where the magnitude of the differential privacy has a positive correlation with the robustified intensity; and (2) the generalization error of adversarial training can be upper bounded by an $\mathcal O(\sqrt{\log N}/N)$ on-average bound and an $\mathcal O(1/\sqrt{N})$ high-probability bound, both of which have positive correlations with the robustified intensity. Additionally, our generalization bounds do not explicitly rely on the parameter size which would be prohibitively large in deep learning. Systematic experiments on standard datasets, CIFAR-10 and CIFAR-100, are in full agreement with our theories. The source code package is available at \url{https://github.com/fshp971/RPG}.


Tighter Generalization Bounds for Iterative Differentially Private Learning Algorithms

arXiv.org Machine Learning

This paper studies the relationship between generalization and privacy preservation in iterative learning algorithms by two sequential steps. We first establish an alignment between generalization and privacy preservation for any learning algorithm. We prove that $(\varepsilon, \delta)$-differential privacy implies an on-average generalization bound for multi-database learning algorithms which further leads to a high-probability bound for any learning algorithm. This high-probability bound also implies a PAC-learnable guarantee for differentially private learning algorithms. We then investigate how the iterative nature shared by most learning algorithms influence privacy preservation and further generalization. Three composition theorems are proposed to approximate the differential privacy of any iterative algorithm through the differential privacy of its every iteration. By integrating the above two steps, we eventually deliver generalization bounds for iterative learning algorithms, which suggest one can simultaneously enhance privacy preservation and generalization. Our results are strictly tighter than the existing works. Particularly, our generalization bounds do not rely on the model size which is prohibitively large in deep learning. This sheds light to understanding the generalizability of deep learning. These results apply to a wide spectrum of learning algorithms. In this paper, we apply them to stochastic gradient Langevin dynamics and agnostic federated learning as examples.