Plotting

 Wang, Baojun


EventWeave: A Dynamic Framework for Capturing Core and Supporting Events in Dialogue Systems

arXiv.org Artificial Intelligence

Existing large language models (LLMs) have shown remarkable progress in dialogue systems. However, many approaches still overlook the fundamental role of events throughout multi-turn interactions, leading to \textbf{incomplete context tracking}. Without tracking these events, dialogue systems often lose coherence and miss subtle shifts in user intent, causing disjointed responses. To bridge this gap, we present \textbf{EventWeave}, an event-centric framework that identifies and updates both core and supporting events as the conversation unfolds. Specifically, we organize these events into a dynamic event graph, which represents the interplay between \textbf{core events} that shape the primary idea and \textbf{supporting events} that provide critical context during the whole dialogue. By leveraging this dynamic graph, EventWeave helps models focus on the most relevant events when generating responses, thus avoiding repeated visits of the entire dialogue history. Experimental results on two benchmark datasets show that EventWeave improves response quality and event relevance without fine-tuning.


PerLTQA: A Personal Long-Term Memory Dataset for Memory Classification, Retrieval, and Synthesis in Question Answering

arXiv.org Artificial Intelligence

Long-term memory plays a critical role in personal interaction, considering long-term memory can better leverage world knowledge, historical information, and preferences in dialogues. Our research introduces PerLTQA, an innovative QA dataset that combines semantic and episodic memories, including world knowledge, profiles, social relationships, events, and dialogues. This dataset is collected to investigate the use of personalized memories, focusing on social interactions and events in the QA task. PerLTQA features two types of memory and a comprehensive benchmark of 8,593 questions for 30 characters, facilitating the exploration and application of personalized memories in Large Language Models (LLMs). Based on PerLTQA, we propose a novel framework for memory integration and generation, consisting of three main components: Memory Classification, Memory Retrieval, and Memory Synthesis. We evaluate this framework using five LLMs and three retrievers. Experimental results demonstrate that BERT-based classification models significantly outperform LLMs such as ChatGLM3 and ChatGPT in the memory classification task. Furthermore, our study highlights the importance of effective memory integration in the QA task.


SELF: Self-Evolution with Language Feedback

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have shown impressive adaptability in various fields, yet the optimal pathway of autonomous model evolution remains underexplored. Drawing inspiration from the self-driven learning process of humans, we introduce SELF (Self-Evolution with Language Feedback), a novel learning framework that empowers LLMs to continually self-improve their abilities. SELF initiates with a meta-skill learning process that equips the LLMs with capabilities for self-feedback and self-refinement. SELF employs language-based feedback for detailed and nuanced evaluations, pinpointing response flaws and suggesting refinements. Subsequently, the model engages in an iterative process of self-evolution: they autonomously generate responses to unlabeled instructions, refine these responses interactively, and use the refined and filtered data for iterative self-training, thereby progressively boosting their capabilities. Moreover, the SELF framework equips the model with the ability to self-refine during inference, leading to further improved response quality. Our experiments on mathematical and general tasks demonstrate that SELF enables the model to continually selfimprove without human intervention. The SELF framework indicates a promising direction for the autonomous evolution of LLMs, transitioning them from passive information receivers to active participants in their development. Large Language Models (LLMs), like ChatGPT (OpenAI, 2022) and GPT-4 (OpenAI, 2023), stand at the forefront of the AI revolution, demonstrating versatility across tasks. Despite their evident capabilities, the way towards achieving autonomous development of LLMs is still under-explored. The development of automatically improved LLMs can draw inspiration from human self-driven learning mechanisms. When facing new challenges, humans naturally engage in a learning cycle of initial attempts, introspective feedback, and behavior refinement. This leads to a critical question: "Can LLMs mimic the human learning process, utilizing self-refinement to enhance their inherent capabilities?"


YODA: Teacher-Student Progressive Learning for Language Models

arXiv.org Artificial Intelligence

Although large language models (LLMs) have demonstrated adeptness in a range of tasks, they still lag behind human learning efficiency. This disparity is often linked to the inherent human capacity to learn from basic examples, gradually generalize and handle more complex problems, and refine their skills with continuous feedback. Inspired by this, this paper introduces YODA, a novel teacher-student progressive learning framework that emulates the teacher-student education process to improve the efficacy of model fine-tuning. The framework operates on an interactive \textit{basic-generalized-harder} loop. The teacher agent provides tailored feedback on the student's answers, and systematically organizes the education process. This process unfolds by teaching the student basic examples, reinforcing understanding through generalized questions, and then enhancing learning by posing questions with progressively enhanced complexity. With the teacher's guidance, the student learns to iteratively refine its answer with feedback, and forms a robust and comprehensive understanding of the posed questions. The systematic procedural data, which reflects the progressive learning process of humans, is then utilized for model training. Taking math reasoning as a testbed, experiments show that training LLaMA2 with data from YODA improves SFT with significant performance gain (+17.01\% on GSM8K and +9.98\% on MATH). In addition, we find that training with curriculum learning further improves learning robustness.


Data Management For Large Language Models: A Survey

arXiv.org Artificial Intelligence

Data plays a fundamental role in the training of Large Language Models (LLMs). Effective data management, particularly in the formulation of a well-suited training dataset, holds significance for enhancing model performance and improving training efficiency during pretraining and supervised fine-tuning phases. Despite the considerable importance of data management, the current research community still falls short in providing a systematic analysis of the rationale behind management strategy selection, its consequential effects, methodologies for evaluating curated datasets, and the ongoing pursuit of improved strategies. Consequently, the exploration of data management has attracted more and more attention among the research community. This survey provides a comprehensive overview of current research in data management within both the pretraining and supervised fine-tuning stages of LLMs, covering various noteworthy aspects of data management strategy design: data quantity, data quality, domain/task composition, etc. Looking toward the future, we extrapolate existing challenges and outline promising directions for development in this field. Therefore, this survey serves as a guiding resource for practitioners aspiring to construct powerful LLMs through effective data management practices. The collection of the latest papers is available at https://github.com/ZigeW/data_management_LLM.


Zero-shot Cross-lingual Transfer without Parallel Corpus

arXiv.org Artificial Intelligence

Recently, although pre-trained language models have achieved great success on multilingual NLP (Natural Language Processing) tasks, the lack of training data on many tasks in low-resource languages still limits their performance. One effective way of solving that problem is to transfer knowledge from rich-resource languages to low-resource languages. However, many previous works on cross-lingual transfer rely heavily on the parallel corpus or translation models, which are often difficult to obtain. We propose a novel approach to conduct zero-shot cross-lingual transfer with a pre-trained model. It consists of a Bilingual Task Fitting module that applies task-related bilingual information alignment; a self-training module generates pseudo soft and hard labels for unlabeled data and utilizes them to conduct self-training. We got the new SOTA on different tasks without any dependencies on the parallel corpus or translation models.


Exploring the Usage of Chinese Pinyin in Pretraining

arXiv.org Artificial Intelligence

Unlike alphabetic languages, Chinese spelling and pronunciation are different. Both characters and pinyin take an important role in Chinese language understanding. In Chinese NLP tasks, we almost adopt characters or words as model input, and few works study how to use pinyin. However, pinyin is essential in many scenarios, such as error correction and fault tolerance for ASR-introduced errors. Most of these errors are caused by the same or similar pronunciation words, and we refer to this type of error as SSP(the same or similar pronunciation) errors for short. In this work, we explore various ways of using pinyin in pretraining models and propose a new pretraining method called PmBERT. Our method uses characters and pinyin in parallel for pretraining. Through delicate pretraining tasks, the characters and pinyin representation are fused, which can enhance the error tolerance for SSP errors. We do comprehensive experiments and ablation tests to explore what makes a robust phonetic enhanced Chinese language model. The experimental results on both the constructed noise-added dataset and the public error-correction dataset demonstrate that our model is more robust compared to SOTA models.


Lexicon-injected Semantic Parsing for Task-Oriented Dialog

arXiv.org Artificial Intelligence

Recently, semantic parsing using hierarchical representations for dialog systems has captured substantial attention. Task-Oriented Parse (TOP), a tree representation with intents and slots as labels of nested tree nodes, has been proposed for parsing user utterances. Previous TOP parsing methods are limited on tackling unseen dynamic slot values (e.g., new songs and locations added), which is an urgent matter for real dialog systems. To mitigate this issue, we first propose a novel span-splitting representation for span-based parser that outperforms existing methods. Then we present a novel lexicon-injected semantic parser, which collects slot labels of tree representation as a lexicon, and injects lexical features to the span representation of parser. An additional slot disambiguation technique is involved to remove inappropriate span match occurrences from the lexicon. Our best parser produces a new state-of-the-art result (87.62%) on the TOP dataset, and demonstrates its adaptability to frequently updated slot lexicon entries in real task-oriented dialog, with no need of retraining.