Plotting

 Wang, Ao


Attentional Graph Meta-Learning for Indoor Localization Using Extremely Sparse Fingerprints

arXiv.org Machine Learning

Fingerprint-based indoor localization is often labor-intensive due to the need for dense grids and repeated measurements across time and space. Maintaining high localization accuracy with extremely sparse fingerprints remains a persistent challenge. Existing benchmark methods primarily rely on the measured fingerprints, while neglecting valuable spatial and environmental characteristics. In this paper, we propose a systematic integration of an Attentional Graph Neural Network (AGNN) model, capable of learning spatial adjacency relationships and aggregating information from neighboring fingerprints, and a meta-learning framework that utilizes datasets with similar environmental characteristics to enhance model training. To minimize the labor required for fingerprint collection, we introduce two novel data augmentation strategies: 1) unlabeled fingerprint augmentation using moving platforms, which enables the semi-supervised AGNN model to incorporate information from unlabeled fingerprints, and 2) synthetic labeled fingerprint augmentation through environmental digital twins, which enhances the meta-learning framework through a practical distribution alignment, which can minimize the feature discrepancy between synthetic and real-world fingerprints effectively. By integrating these novel modules, we propose the Attentional Graph Meta-Learning (AGML) model. This novel model combines the strengths of the AGNN model and the meta-learning framework to address the challenges posed by extremely sparse fingerprints. To validate our approach, we collected multiple datasets from both consumer-grade WiFi devices and professional equipment across diverse environments. Extensive experiments conducted on both synthetic and real-world datasets demonstrate that the AGML model-based localization method consistently outperforms all baseline methods using sparse fingerprints across all evaluated metrics.


Non-contact Dexterous Micromanipulation with Multiple Optoelectronic Robots

arXiv.org Artificial Intelligence

Micromanipulation systems leverage automation and robotic technologies to improve the precision, repeatability, and efficiency of various tasks at the microscale. However, current approaches are typically limited to specific objects or tasks, which necessitates the use of custom tools and specialized grasping methods. This paper proposes a novel non-contact micromanipulation method based on optoelectronic technologies. The proposed method utilizes repulsive dielectrophoretic forces generated in the optoelectronic field to drive a microrobot, enabling the microrobot to push the target object in a cluttered environment without physical contact. The non-contact feature can minimize the risks of potential damage, contamination, or adhesion while largely improving the flexibility of manipulation. The feature enables the use of a general tool for indirect object manipulation, eliminating the need for specialized tools. A series of simulation studies and real-world experiments -- including non-contact trajectory tracking, obstacle avoidance, and reciprocal avoidance between multiple microrobots -- are conducted to validate the performance of the proposed method. The proposed formulation provides a general and dexterous solution for a range of objects and tasks at the micro scale.


Language-Enhanced Latent Representations for Out-of-Distribution Detection in Autonomous Driving

arXiv.org Artificial Intelligence

Out-of-distribution (OOD) detection is essential in autonomous driving, to determine when learning-based components encounter unexpected inputs. Traditional detectors typically use encoder models with fixed settings, thus lacking effective human interaction capabilities. With the rise of large foundation models, multimodal inputs offer the possibility of taking human language as a latent representation, thus enabling language-defined OOD detection. In this paper, we use the cosine similarity of image and text representations encoded by the multimodal model CLIP as a new representation to improve the transparency and controllability of latent encodings used for visual anomaly detection. We compare our approach with existing pre-trained encoders that can only produce latent representations that are meaningless from the user's standpoint. Our experiments on realistic driving data show that the language-based latent representation performs better than the traditional representation of the vision encoder and helps improve the detection performance when combined with standard representations.


Arrhythmia Classifier Based on Ultra-Lightweight Binary Neural Network

arXiv.org Artificial Intelligence

Reasonably and effectively monitoring arrhythmias through ECG signals has significant implications for human health. With the development of deep learning, numerous ECG classification algorithms based on deep learning have emerged. However, most existing algorithms trade off high accuracy for complex models, resulting in high storage usage and power consumption. This also inevitably increases the difficulty of implementation on wearable Artificial Intelligence-of-Things (AIoT) devices with limited resources. In this study, we proposed a universally applicable ultra-lightweight binary neural network(BNN) that is capable of 5-class and 17-class arrhythmia classification based on ECG signals. Our BNN achieves 96.90% (full precision 97.09%) and 97.50% (full precision 98.00%) accuracy for 5-class and 17-class classification, respectively, with state-of-the-art storage usage (3.76 KB and 4.45 KB). Compared to other binarization works, our approach excels in supporting two multi-classification modes while achieving the smallest known storage space. Moreover, our model achieves optimal accuracy in 17-class classification and boasts an elegantly simple network architecture. The algorithm we use is optimized specifically for hardware implementation. Our research showcases the potential of lightweight deep learning models in the healthcare industry, specifically in wearable medical devices, which hold great promise for improving patient outcomes and quality of life. Code is available on: https://github.com/xpww/ECG_BNN_Net


Interactive Model with Structural Loss for Language-based Abductive Reasoning

arXiv.org Artificial Intelligence

The abductive natural language inference task ($\alpha$NLI) is proposed to infer the most plausible explanation between the cause and the event. In the $\alpha$NLI task, two observations are given, and the most plausible hypothesis is asked to pick out from the candidates. Existing methods model the relation between each candidate hypothesis separately and penalize the inference network uniformly. In this paper, we argue that it is unnecessary to distinguish the reasoning abilities among correct hypotheses; and similarly, all wrong hypotheses contribute the same when explaining the reasons of the observations. Therefore, we propose to group instead of ranking the hypotheses and design a structural loss called ``joint softmax focal loss'' in this paper. Based on the observation that the hypotheses are generally semantically related, we have designed a novel interactive language model aiming at exploiting the rich interaction among competing hypotheses. We name this new model for $\alpha$NLI: Interactive Model with Structural Loss (IMSL). The experimental results show that our IMSL has achieved the highest performance on the RoBERTa-large pretrained model, with ACC and AUC results increased by about 1\% and 5\% respectively.