Plotting

 Wang, An


OSSAR: Towards Open-Set Surgical Activity Recognition in Robot-assisted Surgery

arXiv.org Artificial Intelligence

In the realm of automated robotic surgery and computer-assisted interventions, understanding robotic surgical activities stands paramount. Existing algorithms dedicated to surgical activity recognition predominantly cater to pre-defined closed-set paradigms, ignoring the challenges of real-world open-set scenarios. Such algorithms often falter in the presence of test samples originating from classes unseen during training phases. To tackle this problem, we introduce an innovative Open-Set Surgical Activity Recognition (OSSAR) framework. Our solution leverages the hyperspherical reciprocal point strategy to enhance the distinction between known and unknown classes in the feature space. Additionally, we address the issue of over-confidence in the closed set by refining model calibration, avoiding misclassification of unknown classes as known ones. To support our assertions, we establish an open-set surgical activity benchmark utilizing the public JIGSAWS dataset. Besides, we also collect a novel dataset on endoscopic submucosal dissection for surgical activity tasks. Extensive comparisons and ablation experiments on these datasets demonstrate the significant outperformance of our method over existing state-of-the-art approaches. Our proposed solution can effectively address the challenges of real-world surgical scenarios. Our code is publicly accessible at https://github.com/longbai1006/OSSAR.


SAR-RARP50: Segmentation of surgical instrumentation and Action Recognition on Robot-Assisted Radical Prostatectomy Challenge

arXiv.org Artificial Intelligence

Surgical tool segmentation and action recognition are fundamental building blocks in many computer-assisted intervention applications, ranging from surgical skills assessment to decision support systems. Nowadays, learning-based action recognition and segmentation approaches outperform classical methods, relying, however, on large, annotated datasets. Furthermore, action recognition and tool segmentation algorithms are often trained and make predictions in isolation from each other, without exploiting potential cross-task relationships. With the EndoVis 2022 SAR-RARP50 challenge, we release the first multimodal, publicly available, in-vivo, dataset for surgical action recognition and semantic instrumentation segmentation, containing 50 suturing video segments of Robotic Assisted Radical Prostatectomy (RARP). The aim of the challenge is twofold. First, to enable researchers to leverage the scale of the provided dataset and develop robust and highly accurate single-task action recognition and tool segmentation approaches in the surgical domain. Second, to further explore the potential of multitask-based learning approaches and determine their comparative advantage against their single-task counterparts. A total of 12 teams participated in the challenge, contributing 7 action recognition methods, 9 instrument segmentation techniques, and 4 multitask approaches that integrated both action recognition and instrument segmentation. The complete SAR-RARP50 dataset is available at: https://rdr.ucl.ac.uk/projects/SARRARP50_Segmentation_of_surgical_instrumentation_and_Action_Recognition_on_Robot-Assisted_Radical_Prostatectomy_Challenge/191091


Learning-Based Difficulty Calibration for Enhanced Membership Inference Attacks

arXiv.org Artificial Intelligence

Machine learning models, in particular deep neural networks, are currently an integral part of various applications, from healthcare to finance. However, using sensitive data to train these models raises concerns about privacy and security. One method that has emerged to verify if the trained models are privacy-preserving is Membership Inference Attacks (MIA), which allows adversaries to determine whether a specific data point was part of a model's training dataset. While a series of MIAs have been proposed in the literature, only a few can achieve high True Positive Rates (TPR) in the low False Positive Rate (FPR) region (0.01%~1%). This is a crucial factor to consider for an MIA to be practically useful in real-world settings. In this paper, we present a novel approach to MIA that is aimed at significantly improving TPR at low FPRs. Our method, named learning-based difficulty calibration for MIA(LDC-MIA), characterizes data records by their hardness levels using a neural network classifier to determine membership. The experiment results show that LDC-MIA can improve TPR at low FPR by up to 4x compared to the other difficulty calibration based MIAs. It also has the highest Area Under ROC curve (AUC) across all datasets. Our method's cost is comparable with most of the existing MIAs, but is orders of magnitude more efficient than one of the state-of-the-art methods, LiRA, while achieving similar performance.


Landmark Detection using Transformer Toward Robot-assisted Nasal Airway Intubation

arXiv.org Artificial Intelligence

Robot-assisted airway intubation application needs high accuracy in locating targets and organs. Two vital landmarks, nostrils and glottis, can be detected during the intubation to accommodate the stages of nasal intubation. Automated landmark detection can provide accurate localization and quantitative evaluation. The Detection Transformer (DeTR) leads object detectors to a new paradigm with long-range dependence. However, current DeTR requires long iterations to converge, and does not perform well in detecting small objects. This paper proposes a transformer-based landmark detection solution with deformable DeTR and the semantic-aligned-matching module for detecting landmarks in robot-assisted intubation. The semantics aligner can effectively align the semantics of object queries and image features in the same embedding space using the most discriminative features. To evaluate the performance of our solution, we utilize a publicly accessible glottis dataset and automatically annotate a nostril detection dataset. The experimental results demonstrate our competitive performance in detection accuracy. Our code is publicly accessible.


Semi-supervised Learning for Segmentation of Bleeding Regions in Video Capsule Endoscopy

arXiv.org Artificial Intelligence

In the realm of modern diagnostic technology, video capsule endoscopy (VCE) is a standout for its high efficacy and non-invasive nature in diagnosing various gastrointestinal (GI) conditions, including obscure bleeding. Importantly, for the successful diagnosis and treatment of these conditions, accurate recognition of bleeding regions in VCE images is crucial. While deep learning-based methods have emerged as powerful tools for the automated analysis of VCE images, they often demand large training datasets with comprehensive annotations. Acquiring these labeled datasets tends to be time-consuming, costly, and requires significant domain expertise. To mitigate this issue, we have embraced a semi-supervised learning (SSL) approach for the bleeding regions segmentation within VCE. By adopting the `Mean Teacher' method, we construct a student U-Net equipped with an scSE attention block, alongside a teacher model of the same architecture. These models' parameters are alternately updated throughout the training process. We use the Kvasir-Capsule dataset for our experiments, which encompasses various GI bleeding conditions. Notably, we develop the segmentation annotations for this dataset ourselves. The findings from our experiments endorse the efficacy of the SSL-based segmentation strategy, demonstrating its capacity to reduce reliance on large volumes of annotations for model training, without compromising on the accuracy of identification.


LLCaps: Learning to Illuminate Low-Light Capsule Endoscopy with Curved Wavelet Attention and Reverse Diffusion

arXiv.org Artificial Intelligence

Wireless capsule endoscopy (WCE) is a painless and non-invasive diagnostic tool for gastrointestinal (GI) diseases. However, due to GI anatomical constraints and hardware manufacturing limitations, WCE vision signals may suffer from insufficient illumination, leading to a complicated screening and examination procedure. Deep learning-based low-light image enhancement (LLIE) in the medical field gradually attracts researchers. Given the exuberant development of the denoising diffusion probabilistic model (DDPM) in computer vision, we introduce a WCE LLIE framework based on the multi-scale convolutional neural network (CNN) and reverse diffusion process. The multi-scale design allows models to preserve high-resolution representation and context information from low-resolution, while the curved wavelet attention (CWA) block is proposed for high-frequency and local feature learning. Furthermore, we combine the reverse diffusion procedure to further optimize the shallow output and generate the most realistic image. The proposed method is compared with ten state-of-the-art (SOTA) LLIE methods and significantly outperforms quantitatively and qualitatively. The superior performance on GI disease segmentation further demonstrates the clinical potential of our proposed model. Our code is publicly accessible.


SAM Meets Robotic Surgery: An Empirical Study in Robustness Perspective

arXiv.org Artificial Intelligence

Segment Anything Model (SAM) is a foundation model for semantic segmentation and shows excellent generalization capability with the prompts. In this empirical study, we investigate the robustness and zero-shot generalizability of the SAM in the domain of robotic surgery in various settings of (i) prompted vs. unprompted; (ii) bounding box vs. points-based prompt; (iii) generalization under corruptions and perturbations with five severity levels; and (iv) state-of-the-art supervised model vs. SAM. We conduct all the observations with two well-known robotic instrument segmentation datasets of MICCAI EndoVis 2017 and 2018 challenges. Our extensive evaluation results reveal that although SAM shows remarkable zero-shot generalization ability with bounding box prompts, it struggles to segment the whole instrument with point-based prompts and unprompted settings. Furthermore, our qualitative figures demonstrate that the model either failed to predict the parts of the instrument mask (e.g., jaws, wrist) or predicted parts of the instrument as different classes in the scenario of overlapping instruments within the same bounding box or with the point-based prompt. In fact, it is unable to identify instruments in some complex surgical scenarios of blood, reflection, blur, and shade. Additionally, SAM is insufficiently robust to maintain high performance when subjected to various forms of data corruption. Therefore, we can argue that SAM is not ready for downstream surgical tasks without further domain-specific fine-tuning.


DREEAM: Guiding Attention with Evidence for Improving Document-Level Relation Extraction

arXiv.org Artificial Intelligence

Document-level relation extraction (DocRE) is the task of identifying all relations between each entity pair in a document. Evidence, defined as sentences containing clues for the relationship between an entity pair, has been shown to help DocRE systems focus on relevant texts, thus improving relation extraction. However, evidence retrieval (ER) in DocRE faces two major issues: high memory consumption and limited availability of annotations. This work aims at addressing these issues to improve the usage of ER in DocRE. First, we propose DREEAM, a memory-efficient approach that adopts evidence information as the supervisory signal, thereby guiding the attention modules of the DocRE system to assign high weights to evidence. Second, we propose a self-training strategy for DREEAM to learn ER from automatically-generated evidence on massive data without evidence annotations. Experimental results reveal that our approach exhibits state-of-the-art performance on the DocRED benchmark for both DocRE and ER. To the best of our knowledge, DREEAM is the first approach to employ ER self-training.


On the Performance of Generative Adversarial Network (GAN) Variants: A Clinical Data Study

arXiv.org Artificial Intelligence

Generative Adversarial Network (GAN) is a useful type of Neural Networks in various types of applications including generative models and feature extraction. Various types of GANs are being researched with different insights, resulting in a diverse family of GANs with a better performance in each generation. This review focuses on various GANs categorized by their common traits.