Waibel, Alex
Connectionist Architectures for Multi-Speaker Phoneme Recognition
II, John B. Hampshire, Waibel, Alex
We present a number of Time-Delay Neural Network (TDNN) based architectures for multi-speaker phoneme recognition (/b,d,g/ task). We use speech of two females and four males to compare the performance of the various architectures against a baseline recognition rate of 95.9% for a single IDNN on the six-speaker /b,d,g/ task. This series of modular designs leads to a highly modular multi-network architecture capable of performing the six-speaker recognition task at the speaker dependent rate of 98.4%. In addition to its high recognition rate, the so-called "Meta-Pi" architecture learns - without direct supervision - to recognize the speech of one particular male speaker using internal models of other male speakers exclusively.
Incremental Parsing by Modular Recurrent Connectionist Networks
Jain, Ajay N., Waibel, Alex
We present a novel, modular, recurrent connectionist network architecture which learns to robustly perform incremental parsing of complex sentences. From sequential input, one word at a time, our networks learn to do semantic role assignment, noun phrase attachment, and clause structure recognition for sentences with passive constructions and center embedded clauses. The networks make syntactic and semantic predictions at every point in time, and previous predictions are revised as expectations are affirmed or violated with the arrival of new information. Our networks induce their own "grammar rules" for dynamically transforming an input sequence of words into a syntactic/semantic interpretation. These networks generalize and display tolerance to input which has been corrupted in ways common in spoken language.
Connectionist Architectures for Multi-Speaker Phoneme Recognition
II, John B. Hampshire, Waibel, Alex
We present a number of Time-Delay Neural Network (TDNN) based architectures for multi-speaker phoneme recognition (/b,d,g/ task). We use speech of two females and four males to compare the performance of the various architectures against a baseline recognition rate of 95.9% for a single IDNN on the six-speaker /b,d,g/ task.
Incremental Parsing by Modular Recurrent Connectionist Networks
Jain, Ajay N., Waibel, Alex
We present a novel, modular, recurrent connectionist network architecture of complexwhich learns to robustly perform incremental parsing sentences. From sequential input, one word at a time, our networks learn to do semantic role assignment, noun phrase attachment, and clause structure recognition for sentences with passive constructions and center embedded clauses. The networks make syntactic and semantic predictions at every point in time, and previous predictions are revised as expectations are affirmed or violated with the arrival of new information. Our networks induce their own "grammar rules" for dynamically transforming an input sequence of words into a syntactic/semantic interpretation.
Consonant Recognition by Modular Construction of Large Phonemic Time-Delay Neural Networks
Waibel, Alex
Encouraged by these results we wanted to explore the question, how we might expand on these models to make them useful for the design of speech recognition systems. A problem that emerges as we attempt to apply neural network models to the full speech recognition problem is the problem of scaling. Simply extending neural networks to ever larger structures and retraining them as one monolithic net quickly exceeds the capabilities of the fastest and largest supercomputers. The search complexity of finding a good solutions in a huge space of possible network configurations also soon assumes unmanageable proportions. Moreover, having to decide on all possible classes for recognition ahead of time as well as collecting sufficient data to train such a large monolithic network is impractical to say the least. In an effort to extend our models from small recognition tasks to large scale speech recognition systems, we must therefore explore modularity and incremental learning as design strategies to break up a large learning task into smaller subtasks. Breaking up a large task into subtasks to be tackled by individual black boxes interconnected in ad hoc arrangements, on the other hand, would mean to abandon one of the most attractive aspects of connectionism: the ability to perform complex constraint satisfaction in a massively parallel and interconnected fashion, in view of an overall optimal perfonnance goal.
Consonant Recognition by Modular Construction of Large Phonemic Time-Delay Neural Networks
Waibel, Alex
Encouraged by these results we wanted to explore the question, how we might expand on these models to make them useful for the design of speech recognition systems. A problem that emerges as we attempt to apply neural network models to the full speech recognition problem is the problem of scaling. Simply extending neural networks to ever larger structures and retraining them as one monolithic net quickly exceeds the capabilities of the fastest and largest supercomputers. The search complexity of finding a good solutions in a huge space of possible network configurations also soon assumes unmanageable proportions. Moreover, having to decide on all possible classes for recognition ahead of time as well as collecting sufficient data to train such a large monolithic network is impractical to say the least. In an effort to extend our models from small recognition tasks to large scale speech recognition systems, we must therefore explore modularity and incremental learning as design strategies to break up a large learning task into smaller subtasks. Breaking up a large task into subtasks to be tackled by individual black boxes interconnected in ad hoc arrangements, on the other hand, would mean to abandon one of the most attractive aspects of connectionism: the ability to perform complex constraint satisfaction in a massively parallel and interconnected fashion, in view of an overall optimal perfonnance goal.