Not enough data to create a plot.
Try a different view from the menu above.
Vlassov, Vladimir
CFiCS: Graph-Based Classification of Common Factors and Microcounseling Skills
Schmidt, Fabian, Hammerfald, Karin, Jahren, Henrik Haaland, Vlassov, Vladimir
Common factors and microcounseling skills are critical to the effectiveness of psychotherapy. Understanding and measuring these elements provides valuable insights into therapeutic processes and outcomes. However, automatic identification of these change principles from textual data remains challenging due to the nuanced and context-dependent nature of therapeutic dialogue. This paper introduces CFiCS, a hierarchical classification framework integrating graph machine learning with pretrained contextual embeddings. We represent common factors, intervention concepts, and microcounseling skills as a heterogeneous graph, where textual information from ClinicalBERT enriches each node. This structure captures both the hierarchical relationships (e.g., skill-level nodes linking to broad factors) and the semantic properties of therapeutic concepts. By leveraging graph neural networks, CFiCS learns inductive node embeddings that generalize to unseen text samples lacking explicit connections. Our results demonstrate that integrating ClinicalBERT node features and graph structure significantly improves classification performance, especially in fine-grained skill prediction. CFiCS achieves substantial gains in both micro and macro F1 scores across all tasks compared to baselines, including random forests, BERT-based multi-task models, and graph-based methods.
Federated Learning for Medical Applications: A Taxonomy, Current Trends, Challenges, and Future Research Directions
Rauniyar, Ashish, Hagos, Desta Haileselassie, Jha, Debesh, Hรฅkegรฅrd, Jan Erik, Bagci, Ulas, Rawat, Danda B., Vlassov, Vladimir
With the advent of the IoT, AI, ML, and DL algorithms, the landscape of data-driven medical applications has emerged as a promising avenue for designing robust and scalable diagnostic and prognostic models from medical data. This has gained a lot of attention from both academia and industry, leading to significant improvements in healthcare quality. However, the adoption of AI-driven medical applications still faces tough challenges, including meeting security, privacy, and quality of service (QoS) standards. Recent developments in \ac{FL} have made it possible to train complex machine-learned models in a distributed manner and have become an active research domain, particularly processing the medical data at the edge of the network in a decentralized way to preserve privacy and address security concerns. To this end, in this paper, we explore the present and future of FL technology in medical applications where data sharing is a significant challenge. We delve into the current research trends and their outcomes, unravelling the complexities of designing reliable and scalable \ac{FL} models. Our paper outlines the fundamental statistical issues in FL, tackles device-related problems, addresses security challenges, and navigates the complexity of privacy concerns, all while highlighting its transformative potential in the medical field. Our study primarily focuses on medical applications of \ac{FL}, particularly in the context of global cancer diagnosis. We highlight the potential of FL to enable computer-aided diagnosis tools that address this challenge with greater effectiveness than traditional data-driven methods. We hope that this comprehensive review will serve as a checkpoint for the field, summarizing the current state-of-the-art and identifying open problems and future research directions.
The Impact of Background Removal on Performance of Neural Networks for Fashion Image Classification and Segmentation
Liang, Junhui, Liu, Ying, Vlassov, Vladimir
Fashion understanding is a hot topic in computer vision, with many applications having great business value in the market. Fashion understanding remains a difficult challenge for computer vision due to the immense diversity of garments and various scenes and backgrounds. In this work, we try removing the background from fashion images to boost data quality and increase model performance. Having fashion images of evident persons in fully visible garments, we can utilize Salient Object Detection to achieve the background removal of fashion data to our expectations. A fashion image with the background removed is claimed as the "rembg" image, contrasting with the original one in the fashion dataset. We conducted extensive comparative experiments with these two types of images on multiple aspects of model training, including model architectures, model initialization, compatibility with other training tricks and data augmentations, and target task types. Our experiments show that background removal can effectively work for fashion data in simple and shallow networks that are not susceptible to overfitting. It can improve model accuracy by up to 5% in the classification on the FashionStyle14 dataset when training models from scratch. However, background removal does not perform well in deep neural networks due to incompatibility with other regularization techniques like batch normalization, pre-trained initialization, and data augmentations introducing randomness. The loss of background pixels invalidates many existing training tricks in the model training, adding the risk of overfitting for deep models.
AIC-AB NET: A Neural Network for Image Captioning with Spatial Attention and Text Attributes
Tu, Guoyun, Liu, Ying, Vlassov, Vladimir
Image captioning is a significant field across computer vision and natural language processing. We propose and present AIC-AB NET, a novel Attribute-Information-Combined Attention-Based Network that combines spatial attention architecture and text attributes in an encoder-decoder. For caption generation, adaptive spatial attention determines which image region best represents the image and whether to attend to the visual features or the visual sentinel. Text attribute information is synchronously fed into the decoder to help image recognition and reduce uncertainty. We have tested and evaluated our AICAB NET on the MS COCO dataset and a new proposed Fashion dataset. The Fashion dataset is employed as a benchmark of single-object images. The results show the superior performance of the proposed model compared to the state-of-the-art baseline and ablated models on both the images from MSCOCO and our single-object images. Our AIC-AB NET outperforms the baseline adaptive attention network by 0.017 (CIDEr score) on the MS COCO dataset and 0.095 (CIDEr score) on the Fashion dataset.
Accelerate Model Parallel Training by Using Efficient Graph Traversal Order in Device Placement
Wang, Tianze, Payberah, Amir H., Hagos, Desta Haileselassie, Vlassov, Vladimir
Modern neural networks require long training to reach decent performance on massive datasets. One common approach to speed up training is model parallelization, where large neural networks are split across multiple devices. However, different device placements of the same neural network lead to different training times. Most of the existing device placement solutions treat the problem as sequential decision-making by traversing neural network graphs and assigning their neurons to different devices. This work studies the impact of graph traversal order on device placement. In particular, we empirically study how different graph traversal order leads to different device placement, which in turn affects the training execution time. Our experiment results show that the best graph traversal order depends on the type of neural networks and their computation graphs features. In this work, we also provide recommendations on choosing graph traversal order in device placement for various neural network families to improve the training time in model parallelization.