Goto

Collaborating Authors

 Vlachos, Andreas


Factual Error Correction of Claims

arXiv.org Artificial Intelligence

This paper introduces the task of factual error correction: performing edits to a claim so that the generated rewrite is supported by evidence. This serves two purposes: firstly this provides a mechanism to correct written texts that contain misinformation, and secondly, this acts as an inherent explanation for claims already partially supported by evidence. We demonstrate that factual error correction is possible without the need for any additional training data using distant-supervision and retrieved evidence. We release a dataset of 65,000 instances, based on a recent fact verification dataset, to compare our distantly-supervised method to a fully supervised ceiling system. Our manual evaluation indicates which automated evaluation metrics best correlate with human judgements of factuality and whether errors were actually corrected.


Byte-Pair Encoding for Text-to-SQL Generation

arXiv.org Machine Learning

Neural sequence-to-sequence models provide a competitive approach to the task of mapping a question in natural language to an SQL query, also referred to as text-to-SQL generation. The Byte-Pair Encoding algorithm (BPE) has previously been used to improve machine translation (MT) between natural languages. In this work, we adapt BPE for text-to-SQL generation. As the datasets for this task are rather small compared to MT, we present a novel stopping criterion that prevents overfitting the BPE encoding to the training set. Additionally, we present AST BPE, which is a version of BPE that uses the Abstract Syntax Tree (AST) of the SQL statement to guide BPE merges and therefore produce BPE encodings that generalize better. W e improved the accuracy of a strong attentive seq2seq baseline on five out of six English text-to-SQL tasks while reducing training time by more than 50% on four of them due to the shortened targets. Finally, on two of these tasks we exceeded previously reported accuracies.


Generating Token-Level Explanations for Natural Language Inference

arXiv.org Machine Learning

The task of Natural Language Inference (NLI) is widely modeled as supervised sentence pair classification. While there has been a lot of work recently on generating explanations of the predictions of classifiers on a single piece of text, there have been no attempts to generate explanations of classifiers operating on pairs of sentences. In this paper, we show that it is possible to generate token-level explanations for NLI without the need for training data explicitly annotated for this purpose. We use a simple LSTM architecture and evaluate both LIME and Anchor explanations for this task. We compare these to a Multiple Instance Learning (MIL) method that uses thresholded attention make token-level predictions. The approach we present in this paper is a novel extension of zero-shot single-sentence tagging to sentence pairs for NLI. We conduct our experiments on the well-studied SNLI dataset that was recently augmented with manually annotation of the tokens that explain the entailment relation. We find that our white-box MIL-based method, while orders of magnitude faster, does not reach the same accuracy as the black-box methods.


Adversarial attacks against Fact Extraction and VERification

arXiv.org Artificial Intelligence

This paper describes a baseline for the second iteration of the Fact Extraction and VERification shared task (FEVER2.0) which explores the resilience of systems through adversarial evaluation. We present a collection of simple adversarial attacks against systems that participated in the first FEVER shared task. FEVER modeled the assessment of truthfulness of written claims as a joint information retrieval and natural language inference task using evidence from Wikipedia. A large number of participants made use of deep neural networks in their submissions to the shared task. The extent as to whether such models understand language has been the subject of a number of recent investigations and discussion in literature. In this paper, we present a simple method of generating entailment-preserving and entailment-altering perturbations of instances by common patterns within the training data. We find that a number of systems are greatly affected with absolute losses in classification accuracy of up to $29\%$ on the newly perturbed instances. Using these newly generated instances, we construct a sample submission for the FEVER2.0 shared task. Addressing these types of attacks will aid in building more robust fact-checking models, as well as suggest directions to expand the datasets.


Dependency Recurrent Neural Language Models for Sentence Completion

arXiv.org Artificial Intelligence

Recent work on language modelling has shifted focus from count-based models to neural models. In these works, the words in each sentence are always considered in a left-to-right order. In this paper we show how we can improve the performance of the recurrent neural network (RNN) language model by incorporating the syntactic dependencies of a sentence, which have the effect of bringing relevant contexts closer to the word being predicted. We evaluate our approach on the Microsoft Research Sentence Completion Challenge and show that the dependency RNN proposed improves over the RNN by about 10 points in accuracy. Furthermore, we achieve results comparable with the state-of-the-art models on this task.