Not enough data to create a plot.
Try a different view from the menu above.
Vittoz, Eric A.
A Silicon Model of Amplitude Modulation Detection in the Auditory Brainstem
Schaik, André van, Fragnière, Eric, Vittoz, Eric A.
Detectim of the periodicity of amplitude modulatim is a major step in the determinatim of the pitch of a SOODd. In this article we will present a silicm model that uses synchrroicity of spiking neurms to extract the fundamental frequency of a SOODd. It is based m the observatim that the so called'Choppers' in the mammalian Cochlear Nucleus synchrmize well for certain rates of amplitude modulatim, depending m the cell's intrinsic chopping frequency. Our silicm model uses three different circuits, i.e., an artificial cochlea, an Inner Hair Cell circuit, and a spiking neuron circuit
A Silicon Model of Amplitude Modulation Detection in the Auditory Brainstem
Schaik, André van, Fragnière, Eric, Vittoz, Eric A.
Detectim of the periodicity of amplitude modulatim is a major step in the determinatim of the pitch of a SOODd. In this article we will present a silicm model that uses synchrroicity of spiking neurms to extract the fundamental frequency of a SOODd. It is based m the observatim that the so called'Choppers' in the mammalian Cochlear Nucleus synchrmize well for certain rates of amplitude modulatim, depending m the cell's intrinsic chopping frequency. Our silicm model uses three different circuits, i.e., an artificial cochlea, an Inner Hair Cell circuit, and a spiking neuron circuit