Plotting

 Vineet Goyal


Beyond Worst-case: A Probabilistic Analysis of Affine Policies in Dynamic Optimization

Neural Information Processing Systems

Affine policies (or control) are widely used as a solution approach in dynamic optimization where computing an optimal adjustable solution is usually intractable. While the worst case performance of affine policies can be significantly bad, the empirical performance is observed to be near-optimal for a large class of problem instances. For instance, in the two-stage dynamic robust optimization problem with linear covering constraints and uncertain right hand side, the worst-case approximation bound for affine policies is O(p m) that is also tight (see Bertsimas and Goyal [8]), whereas observed empirical performance is near-optimal. In this paper, we aim to address this stark-contrast between the worst-case and the empirical performance of affine policies. In particular, we show that affine policies give a good approximation for the two-stage adjustable robust optimization problem with high probability on random instances where the constraint coefficients are generated i.i.d.


Assortment Optimization Under the Mallows model

Neural Information Processing Systems

We consider the assortment optimization problem when customer preferences follow a mixture of Mallows distributions. The assortment optimization problem focuses on determining the revenue/profit maximizing subset of products from a large universe of products; it is an important decision that is commonly faced by retailers in determining what to offer their customers. There are two key challenges: (a) the Mallows distribution lacks a closed-form expression (and requires summing an exponential number of terms) to compute the choice probability and, hence, the expected revenue/profit per customer; and (b) finding the best subset may require an exhaustive search. Our key contributions are an efficiently computable closed-form expression for the choice probability under the Mallows model and a compact mixed integer linear program (MIP) formulation for the assortment problem.