Plotting

 Vincent, Pascal


Stochastic Neural Network with Kronecker Flow

arXiv.org Machine Learning

Recent advances in variational inference enable the modelling of highly structured joint distributions, but are limited in their capacity to scale to the high-dimensional setting of stochastic neural networks. This limitation motivates a need for scalable parameterizations of the noise generation process, in a manner that adequately captures the dependencies among the various parameters. In this work, we address this need and present the Kronecker Flow, a generalization of the Kronecker product to invertible mappings designed for stochastic neural networks. We apply our method to variational Bayesian neural networks on predictive tasks, PAC-Bayes generalization bound estimation, and approximate Thompson sampling in contextual bandits. In all setups, our methods prove to be competitive with existing methods and better than the baselines.


SVRG for Policy Evaluation with Fewer Gradient Evaluations

arXiv.org Machine Learning

Stochastic variance-reduced gradient (SVRG) is an optimization method originally designed for tackling machine learning problems with a finite sum structure. SVRG was later shown to work for policy evaluation, a problem in reinforcement learning in which one aims to estimate the value function of a given policy. SVRG makes use of gradient estimates at two scales. At the slower scale, SVRG computes a full gradient over the whole dataset, which could lead to prohibitive computation costs. In this work, we show that two variants of SVRG for policy evaluation could significantly diminish the number of gradient calculations while preserving a linear convergence speed. More importantly, our theoretical result implies that one does not need to use the entire dataset in every epoch of SVRG when it is applied to policy evaluation with linear function approximation. Our experiments demonstrate large computational savings provided by the proposed methods.


Fast Approximate Natural Gradient Descent in a Kronecker Factored Eigenbasis

Neural Information Processing Systems

Optimization algorithms that leverage gradient covariance information, such as variants of natural gradient descent (Amari, 1998), offer the prospect of yielding more effective descent directions. For models with many parameters, the covari- ance matrix they are based on becomes gigantic, making them inapplicable in their original form. This has motivated research into both simple diagonal approxima- tions and more sophisticated factored approximations such as KFAC (Heskes, 2000; Martens & Grosse, 2015; Grosse & Martens, 2016). In the present work we draw inspiration from both to propose a novel approximation that is provably better than KFAC and amendable to cheap partial updates. It consists in tracking a diagonal variance, not in parameter coordinates, but in a Kronecker-factored eigenbasis, in which the diagonal approximation is likely to be more effective. Experiments show improvements over KFAC in optimization speed for several deep network architectures.


Fast Approximate Natural Gradient Descent in a Kronecker Factored Eigenbasis

Neural Information Processing Systems

Optimization algorithms that leverage gradient covariance information, such as variants of natural gradient descent (Amari, 1998), offer the prospect of yielding more effective descent directions. For models with many parameters, the covari- ance matrix they are based on becomes gigantic, making them inapplicable in their original form. This has motivated research into both simple diagonal approxima- tions and more sophisticated factored approximations such as KFAC (Heskes, 2000; Martens & Grosse, 2015; Grosse & Martens, 2016). In the present work we draw inspiration from both to propose a novel approximation that is provably better than KFAC and amendable to cheap partial updates. It consists in tracking a diagonal variance, not in parameter coordinates, but in a Kronecker-factored eigenbasis, in which the diagonal approximation is likely to be more effective. Experiments show improvements over KFAC in optimization speed for several deep network architectures.


fastMRI: An Open Dataset and Benchmarks for Accelerated MRI

arXiv.org Machine Learning

The excellent soft tissue contrast and flexibility of magnetic resonance imaging (MRI) makes it a very powerful diagnostic tool for a wide range of disorders, including neurological, musculoskeletal, and oncological diseases. However, the long acquisition time in MRI, which can easily exceed 30 minutes, leads to low patient throughput, problems with patient comfort and compliance, artifacts from patient motion, and high exam costs. As a consequence, increasing imaging speed has been a major ongoing research goal since the advent of MRI in the 1970s. Increases in imaging speed have been achieved through both hardware developments (such as improved magnetic field gradients) and software advances (such as new pulse sequences). One noteworthy development in this context is parallel imaging, introduced in the 1990s, which allows multiple data points to be sampled simultaneously, rather than in a traditional sequential order [39, 26, 9].


Parametric Adversarial Divergences are Good Task Losses for Generative Modeling

arXiv.org Machine Learning

Generative modeling of high dimensional data like images is a notoriously difficult and ill-defined problem. In particular, how to evaluate a learned generative model is unclear. In this position paper, we argue that adversarial learning, pioneered with generative adversarial networks (GANs), provides an interesting framework to implicitly define more meaningful task losses for generative modeling tasks, such as for generating "visually realistic" images. We refer to those task losses as parametric adversarial divergences and we give two main reasons why we think parametric divergences are good learning objectives for generative modeling. Additionally, we unify the processes of choosing a good structured loss (in structured prediction) and choosing a discriminator architecture (in generative modeling) using statistical decision theory; we are then able to formalize and quantify the intuition that "weaker" losses are easier to learn from, in a specific setting. Finally, we propose two new challenging tasks to evaluate parametric and nonparametric divergences: a qualitative task of generating very high-resolution digits, and a quantitative task of learning data that satisfies high-level algebraic constraints. We use two common divergences to train a generator and show that the parametric divergence outperforms the nonparametric divergence on both the qualitative and the quantitative task.


Fast Approximate Natural Gradient Descent in a Kronecker-factored Eigenbasis

arXiv.org Machine Learning

Optimization algorithms that leverage gradient covariance information, such as variants of natural gradient descent (Amari, 1998), offer the prospect of yielding more effective descent directions. For models with many parameters, the covariance matrix they are based on becomes gigantic, making them inapplicable in their original form. This has motivated research into both simple diagonal approximations and more sophisticated factored approximations such as KFAC (Heskes, 2000; Martens & Grosse, 2015; Grosse & Martens, 2016). In the present work we draw inspiration from both to propose a novel approximation that is provably better than KFAC and amendable to cheap partial updates. It consists in tracking a diagonal variance, not in parameter coordinates, but in a Kronecker-factored eigenbasis, in which the diagonal approximation is likely to be more effective. Experiments show improvements over KFAC in optimization speed for several deep network architectures.


Randomized Value Functions via Multiplicative Normalizing Flows

arXiv.org Machine Learning

Randomized value functions offer a promising approach towards the challenge of efficient exploration in complex environments with high dimensional state and action spaces. Unlike traditional point estimate methods, randomized value functions maintain a posterior distribution over action-space values. This prevents the agent's behavior policy from prematurely exploiting early estimates and falling into local optima. In this work, we leverage recent advances in variational Bayesian neural networks and combine these with traditional Deep Q-Networks (DQN) to achieve randomized value functions for high-dimensional domains. In particular, we augment DQN with multiplicative normalizing flows in order to track an approximate posterior distribution over its parameters. This allows the agent to perform approximate Thompson sampling in a computationally efficient manner via stochastic gradient methods. We demonstrate the benefits of our approach through an empirical comparison in high dimensional environments.


A Variational Inequality Perspective on Generative Adversarial Nets

arXiv.org Machine Learning

Stability has been a recurrent issue in training generative adversarial networks (GANs). One common way to tackle this issue has been to propose new formulations of the GAN objective. Yet, surprisingly few studies have looked at optimization methods specifically designed for this adversarial training. In this work, we review the "variational inequality" framework which contains most formulations of the GAN objective introduced so far. Taping into the mathematical programming literature, we counter some common misconceptions about the difficulties of saddle point optimization and propose to extend standard methods designed for variational inequalities to GANs training, such as a stochastic version of the extragradient method, and empirically investigate their behavior on GANs.


Learning to Generate Samples from Noise through Infusion Training

arXiv.org Machine Learning

In this work, we investigate a novel training procedure to learn a generative model as the transition operator of a Markov chain, such that, when applied repeatedly on an unstructured random noise sample, it will denoise it into a sample that matches the target distribution from the training set. The novel training procedure to learn this progressive denoising operation involves sampling from a slightly different chain than the model chain used for generation in the absence of a denoising target. In the training chain we infuse information from the training target example that we would like the chains to reach with a high probability. The thus learned transition operator is able to produce quality and varied samples in a small number of steps. Experiments show competitive results compared to the samples generated with a basic Generative Adversarial Net