Villavicencio, Aline
Word Boundary Information Isn't Useful for Encoder Language Models
Gow-Smith, Edward, Phelps, Dylan, Madabushi, Harish Tayyar, Scarton, Carolina, Villavicencio, Aline
All existing transformer-based approaches to NLP using subword tokenisation algorithms encode whitespace (word boundary information) through the use of special space symbols (such as \#\# or \_) forming part of tokens. These symbols have been shown to a) lead to reduced morphological validity of tokenisations, and b) give substantial vocabulary redundancy. As such, removing these symbols has been shown to have a beneficial effect on the processing of morphologically complex words for transformer encoders in the pretrain-finetune paradigm. In this work, we explore whether word boundary information is at all useful to such models. In particular, we train transformer encoders across four different training scales, and investigate several alternative approaches to including word boundary information, evaluating on a range of tasks across different domains and problem set-ups: GLUE (for sentence-level classification), NER (for token-level classification), and two classification datasets involving complex words (Superbizarre and FLOTA). Overall, through an extensive experimental setup that includes the pre-training of 29 models, we find no substantial improvements from our alternative approaches, suggesting that modifying tokenisers to remove word boundary information isn't leading to a loss of useful information.
Evaluating Open-Domain Dialogues in Latent Space with Next Sentence Prediction and Mutual Information
Zhao, Kun, Yang, Bohao, Lin, Chenghua, Rong, Wenge, Villavicencio, Aline, Cui, Xiaohui
The long-standing one-to-many issue of the open-domain dialogues poses significant challenges for automatic evaluation methods, i.e., there may be multiple suitable responses which differ in semantics for a given conversational context. To tackle this challenge, we propose a novel learning-based automatic evaluation metric (CMN), which can robustly evaluate open-domain dialogues by augmenting Conditional Variational Autoencoders (CVAEs) with a Next Sentence Prediction (NSP) objective and employing Mutual Information (MI) to model the semantic similarity of text in the latent space. Experimental results on two open-domain dialogue datasets demonstrate the superiority of our method compared with a wide range of baselines, especially in handling responses which are distant to the golden reference responses in semantics.
Assessing Linguistic Generalisation in Language Models: A Dataset for Brazilian Portuguese
Wilkens, Rodrigo, Zilio, Leonardo, Villavicencio, Aline
Much recent effort has been devoted to creating large-scale language models. Nowadays, the most prominent approaches are based on deep neural networks, such as BERT. However, they lack transparency and interpretability, and are often seen as black boxes. This affects not only their applicability in downstream tasks but also the comparability of different architectures or even of the same model trained using different corpora or hyperparameters. In this paper, we propose a set of intrinsic evaluation tasks that inspect the linguistic information encoded in models developed for Brazilian Portuguese. These tasks are designed to evaluate how different language models generalise information related to grammatical structures and multiword expressions (MWEs), thus allowing for an assessment of whether the model has learned different linguistic phenomena. The dataset that was developed for these tasks is composed of a series of sentences with a single masked word and a cue phrase that helps in narrowing down the context. This dataset is divided into MWEs and grammatical structures, and the latter is subdivided into 6 tasks: impersonal verbs, subject agreement, verb agreement, nominal agreement, passive and connectors. The subset for MWEs was used to test BERTimbau Large, BERTimbau Base and mBERT. For the grammatical structures, we used only BERTimbau Large, because it yielded the best results in the MWE task.
Unsupervised Word Segmentation from Speech with Attention
Godard, Pierre, Zanon-Boito, Marcely, Ondel, Lucas, Berard, Alexandre, Yvon, François, Villavicencio, Aline, Besacier, Laurent
We present a first attempt to perform attentional word segmentation directly from the speech signal, with the final goal to automatically identify lexical units in a low-resource, unwritten language (UL). Our methodology assumes a pairing between recordings in the UL with translations in a well-resourced language. It uses Acoustic Unit Discovery (AUD) to convert speech into a sequence of pseudo-phones that is segmented using neural soft-alignments produced by a neural machine translation model. Evaluation uses an actual Bantu UL, Mboshi; comparisons to monolingual and bilingual baselines illustrate the potential of attentional word segmentation for language documentation.