Plotting

 Vijayaraghavan, Prashanth


Self-Regulated Data-Free Knowledge Amalgamation for Text Classification

arXiv.org Artificial Intelligence

Recently, there has been a growing availability of pre-trained text models on various model repositories. These models greatly reduce the cost of training new models from scratch as they can be fine-tuned for specific tasks or trained on large datasets. However, these datasets may not be publicly accessible due to the privacy, security, or intellectual property issues. In this paper, we aim to develop a lightweight student network that can learn from multiple teacher models without accessing their original training data. Hence, we investigate Data-Free Knowledge Amalgamation (DFKA), a knowledge-transfer task that combines insights from multiple pre-trained teacher models and transfers them effectively to a compact student network. To accomplish this, we propose STRATANET, a modeling framework comprising: (a) a steerable data generator that produces text data tailored to each teacher and (b) an amalgamation module that implements a self-regulative strategy using confidence estimates from the teachers' different layers to selectively integrate their knowledge and train a versatile student. We evaluate our method on three benchmark text classification datasets with varying labels or domains. Empirically, we demonstrate that the student model learned using our STRATANET outperforms several baselines significantly under data-driven and data-free constraints.


CIRCUITSYNTH: Leveraging Large Language Models for Circuit Topology Synthesis

arXiv.org Artificial Intelligence

Circuit topology generation plays a crucial role in the design of electronic circuits, influencing the fundamental functionality of the circuit. In this paper, we introduce CIRCUITSYNTH, a novel approach that harnesses LLMs to facilitate the automated synthesis of valid circuit topologies. With a dataset comprising both valid and invalid circuit configurations, CIRCUITSYNTH employs a sophisticated two-phase methodology, comprising Circuit Topology Generation and Circuit Topology Refinement. Experimental results demonstrate the effectiveness of CIRCUITSYNTH compared to various fine-tuned LLM variants. Our approach lays the foundation for future research aimed at enhancing circuit efficiency and specifying output voltage, thus enabling the automated generation of circuit topologies with improved performance and adherence to design requirements.


VHDL-Eval: A Framework for Evaluating Large Language Models in VHDL Code Generation

arXiv.org Artificial Intelligence

With the unprecedented advancements in Large Language Models (LLMs), their application domains have expanded to include code generation tasks across various programming languages. While significant progress has been made in enhancing LLMs for popular programming languages, there exists a notable gap in comprehensive evaluation frameworks tailored for Hardware Description Languages (HDLs), particularly VHDL. This paper addresses this gap by introducing a comprehensive evaluation framework designed specifically for assessing LLM performance in VHDL code generation task. We construct a dataset for evaluating LLMs on VHDL code generation task. This dataset is constructed by translating a collection of Verilog evaluation problems to VHDL and aggregating publicly available VHDL problems, resulting in a total of 202 problems. To assess the functional correctness of the generated VHDL code, we utilize a curated set of self-verifying testbenches specifically designed for those aggregated VHDL problem set. We conduct an initial evaluation of different LLMs and their variants, including zero-shot code generation, in-context learning (ICL), and Parameter-efficient fine-tuning (PEFT) methods. Our findings underscore the considerable challenges faced by existing LLMs in VHDL code generation, revealing significant scope for improvement. This study emphasizes the necessity of supervised fine-tuning code generation models specifically for VHDL, offering potential benefits to VHDL designers seeking efficient code generation solutions.


PROMINET: Prototype-based Multi-View Network for Interpretable Email Response Prediction

arXiv.org Artificial Intelligence

Email is a widely used tool for business communication, and email marketing has emerged as a cost-effective strategy for enterprises. While previous studies have examined factors affecting email marketing performance, limited research has focused on understanding email response behavior by considering email content and metadata. This study proposes a Prototype-based Multi-view Network (PROMINET) that incorporates semantic and structural information from email data. By utilizing prototype learning, the PROMINET model generates latent exemplars, enabling interpretable email response prediction. The model maps learned semantic and structural exemplars to observed samples in the training data at different levels of granularity, such as document, sentence, or phrase. The approach is evaluated on two real-world email datasets: the Enron corpus and an in-house Email Marketing corpus. Experimental results demonstrate that the PROMINET model outperforms baseline models, achieving a ~3% improvement in F1 score on both datasets. Additionally, the model provides interpretability through prototypes at different granularity levels while maintaining comparable performance to non-interpretable models. The learned prototypes also show potential for generating suggestions to enhance email text editing and improve the likelihood of effective email responses. This research contributes to enhancing sender-receiver communication and customer engagement in email interactions.


M-SENSE: Modeling Narrative Structure in Short Personal Narratives Using Protagonist's Mental Representations

arXiv.org Artificial Intelligence

Narrative is a ubiquitous component of human communication. Understanding its structure plays a critical role in a wide variety of applications, ranging from simple comparative analyses to enhanced narrative retrieval, comprehension, or reasoning capabilities. Prior research in narratology has highlighted the importance of studying the links between cognitive and linguistic aspects of narratives for effective comprehension. This interdependence is related to the textual semantics and mental language in narratives, referring to characters' motivations, feelings or emotions, and beliefs. However, this interdependence is hardly explored for modeling narratives. In this work, we propose the task of automatically detecting prominent elements of the narrative structure by analyzing the role of characters' inferred mental state along with linguistic information at the syntactic and semantic levels. We introduce a STORIES dataset of short personal narratives containing manual annotations of key elements of narrative structure, specifically climax and resolution. To this end, we implement a computational model that leverages the protagonist's mental state information obtained from a pre-trained model trained on social commonsense knowledge and integrates their representations with contextual semantic embed-dings using a multi-feature fusion approach. Evaluating against prior zero-shot and supervised baselines, we find that our model is able to achieve significant improvements in the task of identifying climax and resolution.


Video SemNet: Memory-Augmented Video Semantic Network

arXiv.org Artificial Intelligence

Stories are a very compelling medium to convey ideas, experiences, social and cultural values. Narrative is a specific manifestation of the story that turns it into knowledge for the audience. In this paper, we propose a machine learning approach to capture the narrative elements in movies by bridging the gap between the low-level data representations and semantic aspects of the visual medium. We present a Memory-Augmented Video Semantic Network, called Video SemNet, to encode the semantic descriptors and learn an embedding for the video. The model employs two main components: (i) a neural semantic learner that learns latent embeddings of semantic descriptors and (ii) a memory module that retains and memorizes specific semantic patterns from the video. We evaluate the video representations obtained from variants of our model on two tasks: (a) genre prediction and (b) IMDB Rating prediction. We demonstrate that our model is able to predict genres and IMDB ratings with a weighted F-1 score of 0.72 and 0.63 respectively. The results are indicative of the representational power of our model and the ability of such representations to measure audience engagement.


Generating Black-Box Adversarial Examples for Text Classifiers Using a Deep Reinforced Model

arXiv.org Machine Learning

Recently, generating adversarial examples has become an important means of measuring robustness of a deep learning model. Adversarial examples help us identify the susceptibilities of the model and further counter those vulnerabilities by applying adversarial training techniques. In natural language domain, small perturbations in the form of misspellings or paraphrases can drastically change the semantics of the text. We propose a reinforcement learning based approach towards generating adversarial examples in black-box settings. We demonstrate that our method is able to fool well-trained models for (a) IMDB sentiment classification task and (b) AG's news corpus news categorization task with significantly high success rates. We find that the adversarial examples generated are semantics-preserving perturbations to the original text.


Mapping Twitter Conversation Landscapes

AAAI Conferences

While the most ambitious polls are based on standardized interviews with a few thousand people, millions are tweeting freely and publicly in their own voices about issues they care about. This data offers a vibrant 24/7 snapshot of people's response to various events and topics. The sheer scale of the data on Twitter allows us to measure in aggregate how the various issues are rising and falling in prominence over time. However, the volume of the data also means that an intelligent tool is required to allow the users to make sense of the data. To this end, we built a novel, interactive web-based tool for mapping the conversation landscapes on Twitter. Our system utilizes recent advances in natural language processing and deep neural networks that are robust with respect to the noisy and unconventional nature of tweets, in conjunction with a scalable clustering algorithm an interactive visualization engine to allow users to tap the mine of information that is Twitter. We ran a user study with 40 participants using tweets about the 2016 US presidential election and the summer 2016 Orlando shooting, demonstrating that compared to more conventional methods, our tool can increase the speed and the accuracy with which users can identify and make sense of the various conversation topics on Twitter.


Automatic Detection and Categorization of Election-Related Tweets

AAAI Conferences

With the rise in popularity of public social media and micro-blogging services, most notably Twitter, the people have found a venue to hear and be heard by their peers without an intermediary. As a consequence, and aided by the public nature of Twitter, political scientists now potentially have the means to analyse and understand the narratives that organically form, spread and decline among the public in a political campaign.However, the volume and diversity of the conversation on Twitter, combined with its noisy and idiosyncratic nature, make this a hard task. Thus, advanced data mining and language processing techniques are required to process and analyse the data. In this paper, we present and evaluate a technical framework, based on recent advances in deep neural networks, for identifying and analysing election-related conversation on Twitter on a continuous, longitudinal basis. Our models can detect election-related tweets with an F-score of 0.92 and can categorize these tweets into 22 topics with an F-score of 0.90.