Plotting

 Vetterli, Martin


Blind as a bat: audible echolocation on small robots

arXiv.org Artificial Intelligence

For safe and efficient operation, mobile robots need to perceive their environment, and in particular, perform tasks such as obstacle detection, localization, and mapping. Although robots are often equipped with microphones and speakers, the audio modality is rarely used for these tasks. Compared to the localization of sound sources, for which many practical solutions exist, algorithms for active echolocation are less developed and often rely on hardware requirements that are out of reach for small robots. We propose an end-to-end pipeline for sound-based localization and mapping that is targeted at, but not limited to, robots equipped with only simple buzzers and low-end microphones. The method is model-based, runs in real time, and requires no prior calibration or training. We successfully test the algorithm on the e-puck robot with its integrated audio hardware, and on the Crazyflie drone, for which we design a reproducible audio extension deck. We achieve centimeter-level wall localization on both platforms when the robots are static during the measurement process. Even in the more challenging setting of a flying drone, we can successfully localize walls, which we demonstrate in a proof-of-concept multi-wall localization and mapping demo.


Where You Are Is Who You Are: User Identification by Matching Statistics

arXiv.org Machine Learning

Most users of online services have unique behavioral or usage patterns. These behavioral patterns can be exploited to identify and track users by using only the observed patterns in the behavior. We study the task of identifying users from statistics of their behavioral patterns. Specifically, we focus on the setting in which we are given histograms of users' data collected during two different experiments. We assume that, in the first dataset, the users' identities are anonymized or hidden and that, in the second dataset, their identities are known. We study the task of identifying the users by matching the histograms of their data in the first dataset with the histograms from the second dataset. In recent works, the optimal algorithm for this user identification task is introduced. In this paper, we evaluate the effectiveness of this method on three different types of datasets and in multiple scenarios. Using datasets such as call data records, web browsing histories, and GPS trajectories, we show that a large fraction of users can be easily identified given only histograms of their data; hence these histograms can act as users' fingerprints. We also verify that simultaneous identification of users achieves better performance compared to one-by-one user identification. We show that using the optimal method for identification gives higher identification accuracy than heuristics-based approaches in practical scenarios. The accuracy obtained under this optimal method can thus be used to quantify the maximum level of user identification that is possible in such settings. We show that the key factors affecting the accuracy of the optimal identification algorithm are the duration of the data collection, the number of users in the anonymized dataset, and the resolution of the dataset. We analyze the effectiveness of k-anonymization in resisting user identification attacks on these datasets.


A Fast Hadamard Transform for Signals with Sub-linear Sparsity in the Transform Domain

arXiv.org Machine Learning

A new iterative low complexity algorithm has been presented for computing the Walsh-Hadamard transform (WHT) of an $N$ dimensional signal with a $K$-sparse WHT, where $N$ is a power of two and $K = O(N^\alpha)$, scales sub-linearly in $N$ for some $0 < \alpha < 1$. Assuming a random support model for the non-zero transform domain components, the algorithm reconstructs the WHT of the signal with a sample complexity $O(K \log_2(\frac{N}{K}))$, a computational complexity $O(K\log_2(K)\log_2(\frac{N}{K}))$ and with a very high probability asymptotically tending to 1. The approach is based on the subsampling (aliasing) property of the WHT, where by a carefully designed subsampling of the time domain signal, one can induce a suitable aliasing pattern in the transform domain. By treating the aliasing patterns as parity-check constraints and borrowing ideas from erasure correcting sparse-graph codes, the recovery of the non-zero spectral values has been formulated as a belief propagation (BP) algorithm (peeling decoding) over a sparse-graph code for the binary erasure channel (BEC). Tools from coding theory are used to analyze the asymptotic performance of the algorithm in the very sparse ($\alpha\in(0,\frac{1}{3}]$) and the less sparse ($\alpha\in(\frac{1}{3},1)$) regime.


Recursive Compressed Sensing

arXiv.org Machine Learning

We introduce a recursive algorithm for performing compressed sensing on streaming data. The approach consists of a) recursive encoding, where we sample the input stream via overlapping windowing and make use of the previous measurement in obtaining the next one, and b) recursive decoding, where the signal estimate from the previous window is utilized in order to achieve faster convergence in an iterative optimization scheme applied to decode the new one. To remove estimation bias, a two-step estimation procedure is proposed comprising support set detection and signal amplitude estimation. Estimation accuracy is enhanced by a non-linear voting method and averaging estimates over multiple windows. We analyze the computational complexity and estimation error, and show that the normalized error variance asymptotically goes to zero for sublinear sparsity. Our simulation results show speed up of an order of magnitude over traditional CS, while obtaining significantly lower reconstruction error under mild conditions on the signal magnitudes and the noise level.