Goto

Collaborating Authors

 Vergari, Antonio


Sum-Product Autoencoding: Encoding and Decoding Representations Using Sum-Product Networks

AAAI Conferences

Sum-Product Networks (SPNs) are a deep probabilistic architecture that up to now has been successfully employed for tractable inference. Here, we extend their scope towards unsupervised representation learning: we encode samples into continuous and categorical embeddings and show that they can also be decoded back into the original input space by leveraging MPE inference. We characterize when this Sum-Product Autoencoding (SPAE) leads to equivalent reconstructions and extend it towards dealing with missing embedding information. Our experimental results on several multi-label classification problems demonstrate that SPAE is competitive with state-of-the-art autoencoder architectures, even if the SPNs were never trained to reconstruct their inputs.


Sum-Product Networks for Hybrid Domains

arXiv.org Machine Learning

While all kinds of mixed data -from personal data, over panel and scientific data, to public and commercial data- are collected and stored, building probabilistic graphical models for these hybrid domains becomes more difficult. Users spend significant amounts of time in identifying the parametric form of the random variables (Gaussian, Poisson, Logit, etc.) involved and learning the mixed models. To make this difficult task easier, we propose the first trainable probabilistic deep architecture for hybrid domains that features tractable queries. It is based on Sum-Product Networks (SPNs) with piecewise polynomial leave distributions together with novel nonparametric decomposition and conditioning steps using the Hirschfeld-Gebelein-R\'enyi Maximum Correlation Coefficient. This relieves the user from deciding a-priori the parametric form of the random variables but is still expressive enough to effectively approximate any continuous distribution and permits efficient learning and inference. Our empirical evidence shows that the architecture, called Mixed SPNs, can indeed capture complex distributions across a wide range of hybrid domains.


Visualizing and Understanding Sum-Product Networks

arXiv.org Machine Learning

Sum-Product Networks (SPNs) are recently introduced deep tractable probabilistic models by which several kinds of inference queries can be answered exactly and in a tractable time. Up to now, they have been largely used as black box density estimators, assessed only by comparing their likelihood scores only. In this paper we explore and exploit the inner representations learned by SPNs. We do this with a threefold aim: first we want to get a better understanding of the inner workings of SPNs; secondly, we seek additional ways to evaluate one SPN model and compare it against other probabilistic models, providing diagnostic tools to practitioners; lastly, we want to empirically evaluate how good and meaningful the extracted representations are, as in a classic Representation Learning framework. In order to do so we revise their interpretation as deep neural networks and we propose to exploit several visualization techniques on their node activations and network outputs under different types of inference queries. To investigate these models as feature extractors, we plug some SPNs, learned in a greedy unsupervised fashion on image datasets, in supervised classification learning tasks. We extract several embedding types from node activations by filtering nodes by their type, by their associated feature abstraction level and by their scope. In a thorough empirical comparison we prove them to be competitive against those generated from popular feature extractors as Restricted Boltzmann Machines. Finally, we investigate embeddings generated from random probabilistic marginal queries as means to compare other tractable probabilistic models on a common ground, extending our experiments to Mixtures of Trees.


Towards Representation Learning with Tractable Probabilistic Models

arXiv.org Machine Learning

Probabilistic models learned as density estimators can be exploited in representation learning beside being toolboxes used to answer inference queries only. However, how to extract useful representations highly depends on the particular model involved. We argue that tractable inference, i.e. inference that can be computed in polynomial time, can enable general schemes to extract features from black box models. We plan to investigate how Tractable Probabilistic Models (TPMs) can be exploited to generate embeddings by random query evaluations. We devise two experimental designs to assess and compare different TPMs as feature extractors in an unsupervised representation learning framework. We show some experimental results on standard image datasets by applying such a method to Sum-Product Networks and Mixture of Trees as tractable models generating embeddings.