Not enough data to create a plot.
Try a different view from the menu above.
Vercauteren, Tom
Distributionally Robust Segmentation of Abnormal Fetal Brain 3D MRI
Fidon, Lucas, Aertsen, Michael, Mufti, Nada, Deprest, Thomas, Emam, Doaa, Guffens, Frédéric, Schwartz, Ernst, Ebner, Michael, Prayer, Daniela, Kasprian, Gregor, David, Anna L., Melbourne, Andrew, Ourselin, Sébastien, Deprest, Jan, Langs, Georg, Vercauteren, Tom
The performance of deep neural networks typically increases with the number of training images. However, not all images have the same importance towards improved performance and robustness. In fetal brain MRI, abnormalities exacerbate the variability of the developing brain anatomy compared to non-pathological cases. A small number of abnormal cases, as is typically available in clinical datasets used for training, are unlikely to fairly represent the rich variability of abnormal developing brains. This leads machine learning systems trained by maximizing the average performance to be biased toward non-pathological cases. This problem was recently referred to as hidden stratification. To be suited for clinical use, automatic segmentation methods need to reliably achieve high-quality segmentation outcomes also for pathological cases. In this paper, we show that the state-of-the-art deep learning pipeline nnU-Net has difficulties to generalize to unseen abnormal cases. To mitigate this problem, we propose to train a deep neural network to minimize a percentile of the distribution of per-volume loss over the dataset. We show that this can be achieved by using Distributionally Robust Optimization (DRO). DRO automatically reweights the training samples with lower performance, encouraging nnU-Net to perform more consistently on all cases. We validated our approach using a dataset of 368 fetal brain T2w MRIs, including 124 MRIs of open spina bifida cases and 51 MRIs of cases with other severe abnormalities of brain development.
Real-Time Segmentation of Non-Rigid Surgical Tools based on Deep Learning and Tracking
García-Peraza-Herrera, Luis C., Li, Wenqi, Gruijthuijsen, Caspar, Devreker, Alain, Attilakos, George, Deprest, Jan, Poorten, Emmanuel Vander, Stoyanov, Danail, Vercauteren, Tom, Ourselin, Sébastien
Real-time tool segmentation is an essential component in computer-assisted surgical systems. We propose a novel real-time automatic method based on Fully Convolutional Networks (FCN) and optical flow tracking. Our method exploits the ability of deep neural networks to produce accurate segmentations of highly deformable parts along with the high speed of optical flow. Furthermore, the pre-trained FCN can be fine-tuned on a small amount of medical images without the need to hand-craft features. We validated our method using existing and new benchmark datasets, covering both ex vivo and in vivo real clinical cases where different surgical instruments are employed. Two versions of the method are presented, non-real-time and real-time. The former, using only deep learning, achieves a balanced accuracy of 89.6% on a real clinical dataset, outperforming the (non-real-time) state of the art by 3.8% points. The latter, a combination of deep learning with optical flow tracking, yields an average balanced accuracy of 78.2% across all the validated datasets.
Deep Sequential Mosaicking of Fetoscopic Videos
Bano, Sophia, Vasconcelos, Francisco, Amo, Marcel Tella, Dwyer, George, Gruijthuijsen, Caspar, Deprest, Jan, Ourselin, Sebastien, Poorten, Emmanuel Vander, Vercauteren, Tom, Stoyanov, Danail
Twin-to-twin transfusion syndrome treatment requires fetoscopic laser photocoagulation of placental vascular anastomoses to regulate blood flow to both fetuses. Limited field-of-view (FoV) and low visual quality during fetoscopy make it challenging to identify all vascular connections. Mosaicking can align multiple overlapping images to generate an image with increased FoV, however, existing techniques apply poorly to fetoscopy due to the low visual quality, texture paucity, and hence fail in longer sequences due to the drift accumulated over time. Deep learning techniques can facilitate in overcoming these challenges. Therefore, we present a new generalized Deep Sequential Mosaicking (DSM) framework for fetoscopic videos captured from different settings such as simulation, phantom, and real environments. DSM extends an existing deep image-based homography model to sequential data by proposing controlled data augmentation and outlier rejection methods. Unlike existing methods, DSM can handle visual variations due to specular highlights and reflection across adjacent frames, hence reducing the accumulated drift. We perform experimental validation and comparison using 5 diverse fetoscopic videos to demonstrate the robustness of our framework.
Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge
Bakas, Spyridon, Reyes, Mauricio, Jakab, Andras, Bauer, Stefan, Rempfler, Markus, Crimi, Alessandro, Shinohara, Russell Takeshi, Berger, Christoph, Ha, Sung Min, Rozycki, Martin, Prastawa, Marcel, Alberts, Esther, Lipkova, Jana, Freymann, John, Kirby, Justin, Bilello, Michel, Fathallah-Shaykh, Hassan, Wiest, Roland, Kirschke, Jan, Wiestler, Benedikt, Colen, Rivka, Kotrotsou, Aikaterini, Lamontagne, Pamela, Marcus, Daniel, Milchenko, Mikhail, Nazeri, Arash, Weber, Marc-Andre, Mahajan, Abhishek, Baid, Ujjwal, Kwon, Dongjin, Agarwal, Manu, Alam, Mahbubul, Albiol, Alberto, Albiol, Antonio, Alex, Varghese, Tran, Tuan Anh, Arbel, Tal, Avery, Aaron, B., Pranjal, Banerjee, Subhashis, Batchelder, Thomas, Batmanghelich, Kayhan, Battistella, Enzo, Bendszus, Martin, Benson, Eze, Bernal, Jose, Biros, George, Cabezas, Mariano, Chandra, Siddhartha, Chang, Yi-Ju, Chazalon, Joseph, Chen, Shengcong, Chen, Wei, Chen, Jefferson, Cheng, Kun, Christoph, Meinel, Chylla, Roger, Clérigues, Albert, Costa, Anthony, Cui, Xiaomeng, Dai, Zhenzhen, Dai, Lutao, Deutsch, Eric, Ding, Changxing, Dong, Chao, Dudzik, Wojciech, Estienne, Théo, Shin, Hyung Eun, Everson, Richard, Fabrizio, Jonathan, Fang, Longwei, Feng, Xue, Fidon, Lucas, Fridman, Naomi, Fu, Huan, Fuentes, David, Gering, David G, Gao, Yaozong, Gates, Evan, Gholami, Amir, Gong, Mingming, González-Villá, Sandra, Pauloski, J. Gregory, Guan, Yuanfang, Guo, Sheng, Gupta, Sudeep, Thakur, Meenakshi H, Maier-Hein, Klaus H., Han, Woo-Sup, He, Huiguang, Hernández-Sabaté, Aura, Herrmann, Evelyn, Himthani, Naveen, Hsu, Winston, Hsu, Cheyu, Hu, Xiaojun, Hu, Xiaobin, Hu, Yan, Hu, Yifan, Hua, Rui, Huang, Teng-Yi, Huang, Weilin, Huo, Quan, HV, Vivek, Isensee, Fabian, Islam, Mobarakol, Albiol, Francisco J., Wang, Chiatse J., Jambawalikar, Sachin, Jose, V Jeya Maria, Jian, Weijian, Jin, Peter, Jungo, Alain, Nuechterlein, Nicholas K, Kao, Po-Yu, Kermi, Adel, Keutzer, Kurt, Khened, Mahendra, Kickingereder, Philipp, King, Nik, Knapp, Haley, Knecht, Urspeter, Kohli, Lisa, Kong, Deren, Kong, Xiangmao, Koppers, Simon, Kori, Avinash, Krishnamurthi, Ganapathy, Kumar, Piyush, Kushibar, Kaisar, Lachinov, Dmitrii, Lee, Joon, Lee, Chengen, Lee, Yuehchou, Lefkovits, Szidonia, Lefkovits, Laszlo, Li, Tengfei, Li, Hongwei, Li, Wenqi, Li, Hongyang, Li, Xiaochuan, Lin, Zheng-Shen, Lin, Fengming, Liu, Chang, Liu, Boqiang, Liu, Xiang, Liu, Mingyuan, Liu, Ju, Lladó, Xavier, Luo, Lin, Iftekharuddin, Khan M., Tsai, Yuhsiang M., Ma, Jun, Ma, Kai, Mackie, Thomas, Mahmoudi, Issam, Marcinkiewicz, Michal, McKinley, Richard, Mehta, Sachin, Mehta, Raghav, Meier, Raphael, Merhof, Dorit, Meyer, Craig, Mitra, Sushmita, Moiyadi, Aliasgar, Mrukwa, Grzegorz, Monteiro, Miguel A. B., Myronenko, Andriy, Carver, Eric N, Nalepa, Jakub, Ngo, Thuyen, Niu, Chen, Oermann, Eric, Oliveira, Arlindo, Oliver, Arnau, Ourselin, Sebastien, French, Andrew P., Pound, Michael P., Pridmore, Tony P., Serrano-Rubio, Juan Pablo, Paragios, Nikos, Paschke, Brad, Pei, Linmim, Peng, Suting, Pham, Bao, Piella, Gemma, Pillai, G. N., Piraud, Marie, Popli, Anmol, Prčkovska, Vesna, Puch, Santi, Puybareau, Élodie, Qiao, Xu, Suter, Yannick R, Scott, Matthew R., Rane, Swapnil, Rebsamen, Michael, Ren, Hongliang, Ren, Xuhua, Rezaei, Mina, Lorenzo, Pablo Ribalta, Rippel, Oliver, Robert, Charlotte, Choudhury, Ahana Roy, Jackson, Aaron S., Manjunath, B. S., Salem, Mostafa, Salvi, Joaquim, Sánchez, Irina, Schellingerhout, Dawid, Shboul, Zeina, Shen, Haipeng, Shen, Dinggang, Shenoy, Varun, Shi, Feng, Shu, Hai, Snyder, James, Han, Il Song, Soni, Mehul, Stawiaski, Jean, Subramanian, Shashank, Sun, Li, Sun, Roger, Sun, Jiawei, Sun, Kay, Sun, Yu, Sun, Guoxia, Sun, Shuang, Park, Moo Sung, Szilagyi, Laszlo, Talbar, Sanjay, Tao, Dacheng, Tao, Dacheng, Khadir, Mohamed Tarek, Thakur, Siddhesh, Tochon, Guillaume, Tran, Tuan, Tseng, Kuan-Lun, Turlapov, Vadim, Tustison, Nicholas, Shankar, B. Uma, Vakalopoulou, Maria, Valverde, Sergi, Vanguri, Rami, Vasiliev, Evgeny, Vercauteren, Tom, Vidyaratne, Lasitha, Vivekanandan, Ajeet, Wang, Guotai, Wang, Qian, Wang, Weichung, Wen, Ning, Wen, Xin, Weninger, Leon, Wick, Wolfgang, Wu, Shaocheng, Wu, Qiang, Xia, Yong, Xu, Yanwu, Xu, Xiaowen, Xu, Peiyuan, Yang, Tsai-Ling, Yang, Xiaoping, Yang, Hao-Yu, Yang, Junlin, Yang, Haojin, Yao, Hongdou, Young-Moxon, Brett, Yue, Xiangyu, Zhang, Songtao, Zhang, Angela, Zhang, Kun, Zhang, Xuejie, Zhang, Lichi, Zhang, Xiaoyue, Zhao, Sicheng, Zhao, Yu, Zheng, Yefeng, Zhong, Liming, Zhou, Chenhong, Zhou, Xiaobing, Zhu, Hongtu, Zong, Weiwei, Kalpathy-Cramer, Jayashree, Farahani, Keyvan, Davatzikos, Christos, van Leemput, Koen, Menze, Bjoern
Gliomas are the most common primary brain malignancies, with different degrees of aggressiveness, variable prognosis and various heterogeneous histologic sub-regions, i.e., peritumoral edematous/invaded tissue, necrotic core, active and non-enhancing core. This intrinsic heterogeneity is also portrayed in their radio-phenotype, as their sub-regions are depicted by varying intensity profiles disseminated across multi-parametric magnetic resonance imaging (mpMRI) scans, reflecting varying biological properties. Their heterogeneous shape, extent, and location are some of the factors that make these tumors difficult to resect, and in some cases inoperable. The amount of resected tumor is a factor also considered in longitudinal scans, when evaluating the apparent tumor for potential diagnosis of progression. Furthermore, there is mounting evidence that accurate segmentation of the various tumor sub-regions can offer the basis for quantitative image analysis towards prediction of patient overall survival. This study assesses the state-of-the-art machine learning (ML) methods used for brain tumor image analysis in mpMRI scans, during the last seven instances of the International Brain Tumor Segmentation (BraTS) challenge, i.e. 2012-2018. Specifically, we focus on i) evaluating segmentations of the various glioma sub-regions in pre-operative mpMRI scans, ii) assessing potential tumor progression by virtue of longitudinal growth of tumor sub-regions, beyond use of the RECIST criteria, and iii) predicting the overall survival from pre-operative mpMRI scans of patients that undergone gross total resection. Finally, we investigate the challenge of identifying the best ML algorithms for each of these tasks, considering that apart from being diverse on each instance of the challenge, the multi-institutional mpMRI BraTS dataset has also been a continuously evolving/growing dataset.
Weakly-Supervised Convolutional Neural Networks for Multimodal Image Registration
Hu, Yipeng, Modat, Marc, Gibson, Eli, Li, Wenqi, Ghavami, Nooshin, Bonmati, Ester, Wang, Guotai, Bandula, Steven, Moore, Caroline M., Emberton, Mark, Ourselin, Sébastien, Noble, J. Alison, Barratt, Dean C., Vercauteren, Tom
One of the fundamental challenges in supervised learning for multimodal image registration is the lack of ground-truth for voxel-level spatial correspondence. This work describes a method to infer voxel-level transformation from higher-level correspondence information contained in anatomical labels. We argue that such labels are more reliable and practical to obtain for reference sets of image pairs than voxel-level correspondence. Typical anatomical labels of interest may include solid organs, vessels, ducts, structure boundaries and other subject-specific ad hoc landmarks. The proposed end-to-end convolutional neural network approach aims to predict displacement fields to align multiple labelled corresponding structures for individual image pairs during the training, while only unlabelled image pairs are used as the network input for inference. We highlight the versatility of the proposed strategy, for training, utilising diverse types of anatomical labels, which need not to be identifiable over all training image pairs. At inference, the resulting 3D deformable image registration algorithm runs in real-time and is fully-automated without requiring any anatomical labels or initialisation. Several network architecture variants are compared for registering T2-weighted magnetic resonance images and 3D transrectal ultrasound images from prostate cancer patients. A median target registration error of 3.6 mm on landmark centroids and a median Dice of 0.87 on prostate glands are achieved from cross-validation experiments, in which 108 pairs of multimodal images from 76 patients were tested with high-quality anatomical labels.
Adversarial Deformation Regularization for Training Image Registration Neural Networks
Hu, Yipeng, Gibson, Eli, Ghavami, Nooshin, Bonmati, Ester, Moore, Caroline M., Emberton, Mark, Vercauteren, Tom, Noble, J. Alison, Barratt, Dean C.
We describe an adversarial learning approach to constrain convolutional neural network training for image registration, replacing heuristic smoothness measures of displacement fields often used in these tasks. Using minimally-invasive prostate cancer intervention as an example application, we demonstrate the feasibility of utilizing biomechanical simulations to regularize a weakly-supervised anatomical-label-driven registration network for aligning pre-procedural magnetic resonance (MR) and 3D intra-procedural transrectal ultrasound (TRUS) images. A discriminator network is optimized to distinguish the registration-predicted displacement fields from the motion data simulated by finite element analysis. During training, the registration network simultaneously aims to maximize similarity between anatomical labels that drives image alignment and to minimize an adversarial generator loss that measures divergence between the predicted- and simulated deformation. The end-to-end trained network enables efficient and fully-automated registration that only requires an MR and TRUS image pair as input, without anatomical labels or simulated data during inference. 108 pairs of labelled MR and TRUS images from 76 prostate cancer patients and 71,500 nonlinear finite-element simulations from 143 different patients were used for this study. We show that, with only gland segmentation as training labels, the proposed method can help predict physically plausible deformation without any other smoothness penalty. Based on cross-validation experiments using 834 pairs of independent validation landmarks, the proposed adversarial-regularized registration achieved a target registration error of 6.3 mm that is significantly lower than those from several other regularization methods.